2020.10.27【CSP-J/S】普及组模拟赛总结

题号题目
T1魔法阵~
T2小biu放牛
T3小A的游戏
T4小Biu闯关
得分137/380

T1

在这里插入图片描述

思路

举几个例子,发现能组成的正多边形边数一定是原来的正多边形的边数的约数
这时,只要枚举每种正多边形可能的情况并维护最大值即可。

代码

#include<algorithm>
#include<iostream>
#include<cstdio>
#include<cmath>
using namespace std;
int t[200010];
int c[200010];
int n,js,n_ans;
int check(int x)
{
	int k=1,sum=0,ans=-2147483647;
	while(k<=n/x)
	 {
	 	for(int i=k; i<=n; i+=n/x)
	 	   sum+=t[i];
	 	ans=max(ans,sum);
	 	k++,sum=0;
	 }
	return ans;
}
int main()
{
	cin>>n;
	for(int i=1; i<=n; i++)
	 {
	   scanf("%d",&t[i]);
	   n_ans=n_ans+t[i];
	 }
	for(int i=3; i<=n/2; i++)
	 if(n%i==0)
	   c[++js]=i;
	for(int i=1; i<=js; i++)
	   n_ans=max(check(c[i]),n_ans);
    cout<<n_ans;
	return 0;
}

T2

在这里插入图片描述

思路

首先由于要求最大值最小,最先想到的应该是二分+检查正确性。
选择从左到右贪心的去放置每一头牛。
假设已经放置X头牛,那么如果第X+1头牛紧贴在第X头牛放置是合法的,那么则紧贴着放置
否则检查第X头牛能放置的最左位置
把它放置在能放置的最左位置即可。
当出现某个木桩在第X头牛的左侧
而且如果要在绳子长度内放置下一头牛
下一头牛和当前牛重叠,则说明不合法。
如果最终总长度超过M
也说明不合法,否则都是合法的情况。
总时间复杂度为 O ( n log ⁡ 2 n ) O(n\log_2 n) O(nlog2n)

代码

#include<algorithm>
#include<iostream>
#include<cstdio>
#include<cmath>
using namespace std;
int n,x,m,ans,l,r,mid;
int mz[100010];
bool check(int mi)
{
	int sp=x;
	for(int i=1; i<=n; i++)
	 {
	 	sp=max(mz[i]-mi,sp);
	 	if(sp>mz[i]+mi)
	 	  return false;
	 	sp+=x*2;
	 	if(sp>m+x)
	 	  return false;
	 }
	return true;
}
int main()
{
	cin>>n>>x>>m;
	for(int i=1; i<=n; i++)
	   scanf("%d",&mz[i]);
    if(m/(x*2)<n)
	 {
	 	cout<<-1;
	 	return 0;
	 }
	else
	 {
	 	l=0,r=m;
	 	while(l<=r)
	 	 {
	 	 	mid=(l+r)/2;
	 	 	if(check(mid)==1)
	 	 	  r=mid-1;
	 	 	else
	 	 	  l=mid+1;
		 }
	 }
	cout<<r+1;
	return 0;
}

T3

在这里插入图片描述

思路

本题通过找规律可以发现,
当两个重复数字的最小距离 < = <= <= 删除字符就不可猜。
如果两个相同字符挨在一起也不可猜。
其余情况可猜。

代码

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
using namespace std;
int t,sb,w,ans;
int sz[27][3];
string s;
int main()
{
	cin>>t;
	while(t--)
	 {
	 	w=0;
	 	cin>>s>>sb;
	 	if(sb>=s.size())
	 	 {
	 	 	cout<<"Certain"<<endl;
	 	 	continue;
		 }
	 	memset(sz,0,sizeof(sz));
	 	for(int i=1; i<=26; i++)
	 	   sz[i][3]=128;
	 	for(int i=0; i<=s.size()-1; i++)
	 	 {
	 	   sz[s[i]-96][1]++;
	 	   if(sz[s[i]-96][1]>=2)
	 	     sz[s[i]-96][3]=min(i-sz[s[i]-96][2],sz[s[i]-96][3]);
		   sz[s[i]-96][2]=i;
		 }
		for(int i=1; i<=26; i++)
		 {
		   if(sz[i][3]==1)
		    {
		      cout<<"Uncertain"<<endl;
		      w=1;
		      break;
			}
		   if(sz[i][3]<=sb&&sz[i][3]!=0)
		    {
		     cout<<"Uncertain"<<endl;
		     w=1;
             break;
			}
		 }
		if(w==0)
		  cout<<"Certain"<<endl;
	 }
	return 0;
}

T4

在这里插入图片描述

思路

首先我们可以知道:它可以覆盖 [ a , b ] , [ 2 a , 2 b ] , [ 3 a , 3 b ] … … [ k a , k b ] ( k > 0 ) [a,b], [2a,2b], [3a,3b]……[ka,kb](k>0) [a,b],[2a,2b],[3a,3b][ka,kb](k>0)
那我们来想怎样计算答案
分类讨论

  1. 未出现区间交集
    通过等差数列求和公式,我们可以算出
    ( ( b − a ) + ( ( p − 1 ) ∗ b − ( p − 1 ) ∗ a ) ) ∗ ( p − 1 ) / 2 ((b-a)+((p-1)*b-(p-1)*a))*(p-1)/2 ((ba)+((p1)b(p1)a))(p1)/2
    其中p表示当完整的区间的个数
    这个式子就是求 [ a , b ] , [ 2 a , 2 b ] , [ 3 a , 3 b ] … … [ p a , p b ] ( p > 0 ) [a,b], [2a,2b], [3a,3b]……[pa,pb](p>0) [a,b],[2a,2b],[3a,3b][pa,pb](p>0) 可以覆盖总共的数字个数
    化简得
    ( ( b − a ) + ( ( p − 1 ) ∗ ( b − a ) ) ) ∗ ( p − 1 ) / 2 ((b-a)+((p-1)*(b-a)))*(p-1)/2 ((ba)+((p1)(ba)))(p1)/2
    p ∗ ( b − a ) ∗ ( p − 1 ) / 2 p*(b-a)*(p-1)/2 p(ba)(p1)/2
    然后加上要求的数的位置和区间右端点 − - 最后一个区间的起始位置即可
    m i n ( x x , p ∗ b ) − p ∗ a + 1 min(xx,p*b)-p*a+1 min(xx,pb)pa+1
    为什么是 min ⁡ \min min 呢,因为直接用xx的话最后有一些没有覆盖到的区间会被算进去,所以要和最后的那个区间的右端点取个 min ⁡ \min min
    所以就是
    p ∗ ( p − 1 ) ∗ ( b − a ) / 2 + p − 1 + m i n ( x x , p ∗ b ) − p ∗ a + 1 p*(p-1)*(b-a)/2+p-1+min(xx,p*b)-p*a+1 p(p1)(ba)/2+p1+min(xx,pb)pa+1
  2. 出现区间交集
    其实和上面差不多
    k ∗ ( k − 1 ) ∗ ( b − a ) / 2 k*(k-1)*(b-a)/2 k(k1)(ba)/2
    其中k代表在区间开始出现交集的那个区间的编号
    此式子和上面的化简过程一样
    再加上要求的数的位置 − - 最后一个不完整的区间的起始位置就可以了
    x x − k ∗ a + 1 xx-k*a+1 xxka+1
    所以就是
    k ∗ ( k − 1 ) ∗ ( k − a ) / 2 + k − 1 + x x − k ∗ a + 1 k*(k-1)*(k-a)/2+k-1+xx-k*a+1 k(k1)(ka)/2+k1+xxka+1

代码

#include<algorithm>
#include<iostream>
#include<cstdio>
#include<cmath>
using namespace std;
long long T,a,b,x,y,k;
long long solve(long long xx)
{
	long long p=xx/a;
	if(k<=p)
	  return (b-a)*k*(k-1)/2+k-1+(xx-k*a+1);
	else
	  return (b-a)*p*(p-1)/2+p-1+(min(xx,p*b)-p*a+1);
}
int main()
{
	cin>>T;
	while(T--)
	 {
	 	cin>>a>>b>>x>>y;
	 	k=(a-1)/(b-a)+1;
	 	cout<<solve(y)-solve(x-1)<<endl;
	 }
	return 0;
}
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值