Flink+ClickHouse实战秘籍:5大表引擎优缺点对比,精准一次语义保障方案大公开!

Flink+ClickHouse实战秘籍:5大表引擎优缺点对比,精准一次语义保障方案大公开!

在大数据领域,ClickHouse凭借其卓越的查询性能脱颖而出。但很多人在使用中遇到了性能瓶颈,其实问题很可能出在表引擎的选择上!选对引擎,性能提升10倍不是梦!

一、什么是ClickHouse表引擎?

表引擎是ClickHouse的精髓所在,它决定了数据的存储方式、索引支持、并发性能等核心特性。可以说,引擎选对了,ClickHouse的性能优势才能充分发挥!

二、常用表引擎全方位对比

1. Log系列:轻量级但功能有限、

CREATE TABLE user_logs (
    user_id UInt64,
    action String,
    log_time DateTime,
    device String
) ENGINE = Log()
ORDER BY (user_id, log_time);

架构设计

  • 数据按列存储,不支持索引
  • 并行读取能力有限
  • 简单压缩存储

✅ 优点

  • 写入速度极快
  • 架构简单,易于理解
  • 适合小规模数据测试

❌ 缺点

  • 不支持索引,查询性能差
  • 并发访问能力弱
  • 数据量大时性能急剧下降

适用场景:小型测试表(<100万行)、临时数据存储

2. MergeTree系列:生产环境的首选

CREATE TABLE user_behavior (
    user_id UInt32,
    event_time DateTime,
    event_type String,
    message_id String,
    _version UInt64 DEFAULT 0
) ENGINE = MergeTree()
PARTITION BY toYYYYMMDD(event_time)
ORDER BY (user_id, message_id)
SETTINGS index_granularity = 8192;

架构设计

  • 支持主键索引和分区键
  • 数据分区存储,并行处理
  • 支持数据副本和分布式查询

✅ 优点

  • 查询性能极其出色
  • 支持数据分区和索引
  • 适合海量数据处理
  • 支持多种聚合优化

❌ 缺点

  • 架构相对复杂
  • 需要合理设计分区键和排序键
  • 维护成本较高

适用场景:大多数生产环境、海量数据分析、实时查询

3. ReplacingMergeTree:去重神器

CREATE TABLE flink_sink_table (
    msg_id String,        -- 消息唯一ID
    user_id UInt32,
    action_time DateTime,
    action_type String,
    processing_time DateTime,
    _version UInt64 DEFAULT 0
) ENGINE = ReplacingMergeTree(_version)
PARTITION BY toYYYYMM(action_time)
ORDER BY (user_id, msg_id)
PRIMARY KEY (user_id, msg_id);

✅ 优点

  • 自动去除相同主键的重复数据
  • 保留最后版本数据
  • 减少存储空间占用

❌ 缺点

  • 去重只在合并时发生
  • 查询时可能需要额外处理
  • 对写入性能有轻微影响、

4. SummingMergeTree:预聚合优化

CREATE TABLE sum_table (
    date Date,
    product_id UInt32,
    revenue Decimal(10,2)
) ENGINE = SummingMergeTree()
PARTITION BY date
ORDER BY (date, product_id);

✅ 优点

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

RunningShare

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值