Dijkstra算法概述
Dijkstra算法是一种用于在图中找到单源最短路径问题的算法,特别适用于没有负权边的图。该算法的基本思想是从一个起始点开始,逐步扩大搜索范围,每次遍历到距离起始点最近且未访问过的顶点的邻接节点,直到扩展到所有顶点为止。
Dijkstra算法的工作原理
Dijkstra算法的工作原理是通过维护一个距离数组 和一个访问标记数组 来实现的。数组用于存储从起始点到各个顶点的最短路径长度,而 数组用于标记哪些顶点已经被访问过。算法开始时,将所有顶点的 值初始化为无穷大,然后将起始点的 值设置为0,并标记为已访问。接下来,算法会迭代地选取距离起始点最近且未被访问过的顶点,更新其到所有未被访问过的顶点的距离,并标记为已访问。这个过程会持续进行,直到所有顶点都被访问过,此时算法结束。
Dijkstra算法的C++实现
在C++中,Dijkstra算法可以通过以下代码实现:
#include<bits/stdc++.h>
using namespace std;
void dijkstra(int n, int s, const vector<vector<int>>& g, vector<int>& d, vector<bool>& vis) {
fill(d.begin(), d.end(), numeric_limits<int>::max());
d[s] = 0;
for (int i = 0; i < n; ++i) {
int u = -1;
int min_distance = numeric_limits<int>::max();
for (int j = 0; j < n; ++j) {
if (!vis[j] && d[j] < min_distance) {
u = j;
min_distance = d[j];
}
}
if (u == -1) return; // 如果没有找到未访问的顶点,则停止算法
vis[u] = true;
for (int v = 0; v < n; ++v) {
if (!vis[v] && d[u] + g[u][v] < d[v]) {
d[v] = d[u] + g[u][v];
}
}
}
}
int main() {
int n;
cin >> n;
vector<vector<int>> g(n, vector<int>(n, numeric_limits<int>::max()));
vector<int> d(n, numeric_limits<int>::max());
vector<bool> vis(n, false);
dijkstra(n, 0, g, d, vis);
for (int i = 0; i < n; ++i) {
cout << "Distance from source to vertex " << i << " is " << d[i] << endl;
}
return 0;
}
这段代码首先定义了一个图的邻接矩阵 ,然后使用 函数计算从第0个顶点到所有其他顶点的最短路径长度,并通过 函数的循环打印出这些距离。
注意事项
在使用Dijkstra算法时,需要注意的是它不适用于包含负权边的图,因为这可能会导致算法无法找到正确的最短路径。此外,Dijkstra算法的时间复杂度为 O(V^2),其中 V 是顶点的数量。在实际应用中,可以通过使用优先队列(如C++标准库中的 )来优化算法,将时间复杂度降低到 O(VlogV + E),其中 E 是边的数量。