一、常见的位运算
1、按位与(&)
运算规则:0&0=0; 0&1=0; 1&0=0; 1&1=1; 即:两位同时为“1”,结果才为“1”,否则为0
例如:3&5 即 0000 0011& 0000 0101 = 00000001 因此,3&5的值得1。
2、按位或(|)
运算规则:0|0=0; 0|1=1; 1|0=1; 1|1=1;即 :两个相同位只要有一个为1,其值为1。
例如:3|5 即 00000011 | 0000 0101 = 00000111 因此,3|5的值得7。
3、按位异或(^)
运算规则:0^0=0; 0^1=1; 1^0=1; 1^1=0;即:两个同一位上的数字相同,则该位结果为1,否则为0。
例如:3|5 即 00000011 ^ 0000 0101 = 00000110 因此,3|5的值得6。
4、按位取反(~)
运算规则:~0=1,~1=0;即:对1取反得0,对0取反得1。
例如:~3 即~(00000011)=(11111100)
5、左移运算符(<<)
a<<b
将a各二进制位全部左移b位后得到的值,左移越界丢弃,低位补0。
作用:实际上,左移一位等于乘以2
例如:9<<4
9的二进制:0000 0000 0000 0000 0000 1001
将该二进制左移4位:0000 0000 0000 0000 1001 0000,因此9<<4=144。
6、右移运算符(<<)
a>>b
将a各二进制位全部右移b位后得到的值。溢出最右边的值就被丢弃。
对于有符号数大多数编译器规定:右移时原符号位为1,右移则补1,原符号位为0,右移就补0
作用:右移n位相当于除2^n次方,但有可能除不尽,取整。
例如:9>>2
9的二进制:0000 0000 0000 0000 0000 1001
将该二进制右移2位:0000 0000 0000 0000 0000 0010,因此9>>2=2。
二、常见的二进制位的变换操作
下面列举了一些常见的二进制位的变换操作。
----------------------+---------------------------+--------------------
位运算步骤:
1、确定符合:某位要得1,就给该位或1(|1),其他位为0;要得0,给该位与0(&0),其他位为1;给某位取反,就给该位异或1(^1),其他位为0
2、确定数字
3、构造上一步的数字
----------------------+---------------------------+--------------------
去掉最后一位 | (101101->10110) x >> 1
在最后加一个0 | (101101->1011010) x << 1
在最后加一个1 | (101101->1011011) (x << 1)|1
把最后一位变成1 | (101100->101101) x | 1
把最后一位变成0 | (101101->101100) (x | 1)-1或者(x&1)
最后一位取反 | (101101->101100) x ^ 1
把右数第k位变成1 | (101001->101101,k=3) x | (1 << (k-1))
把右数第k位变成0 | (101101->101001,k=3) x & ~(1 << (k-1))
右数第k位取反 | (101001->101101,k=3) x ^ (1 << (k-1))
取末三位 | (1101101->101) x & 7
取末k位 | (1101101->1101,k=4) x & ((1 << k)-1)
取右数第k位 | (1101101->1,k=4) (x >> (k-1)) & 1
把右边连续的1变成0 | (100101111->100100000) x & (x+1)
把右起第一个0变成1 | (100101111->100111111) x | (x+1)
把右边连续的0变成1 | (11011000->11011111) x | (x-1)