在一个果园里,达达已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆。
达达决定把所有的果子合成一堆。
每一次合并,达达可以把两堆果子合并到一起,消耗的体力等于两堆果子的重量之和。
可以看出,所有的果子经过 n−1 次合并之后,就只剩下一堆了。
达达在合并果子时总共消耗的体力等于每次合并所耗体力之和。
因为还要花大力气把这些果子搬回家,所以达达在合并果子时要尽可能地节省体力。
假定每个果子重量都为 1,并且已知果子的种类数和每种果子的数目,你的任务是设计出合并的次序方案,使达达耗费的体力最少,并输出这个最小的体力耗费值。
例如有 3 种果子,数目依次为 1,2,9。
可以先将 1、2 堆合并,新堆数目为 3,耗费体力为 3。
接着,将新堆与原先的第三堆合并,又得到新的堆,数目为 12,耗费体力为 12。
所以达达总共耗费体力=3+12=15。
可以证明 15 为最小的体力耗费值。
输入格式
输入包括两行,第一行是一个整数 n,表示果子的种类数。
第二行包含 n 个整数,用空格分隔,第 i 个整数 ai 是第 i 种果子的数目。
输出格式
输出包括一行,这一行只包含一个整数,也就是最小的体力耗费值。
输入数据保证这个值小于 2 ^31。
数据范围
1≤n≤10000,
1≤ai≤20000
输入样例:
3
1 2 9
输出样例:
15
每次从当前的堆中找出最小的两个合并。
在哈夫曼树中最优解之中,两个数值最小的节点它们的深度一定是最深的,且可以互为兄弟节点(也可否),否则不是最优解,应当与最深的互换位置。
如图为一颗Huffman Tree
因此合并之后为:3a+3b+3c+3d+2e+2f(可观察出叶子结点的父节点有几个 叶子节点值就乘几)
#include<iostream>
#include<sstream>
#include<string>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<vector>
#include<stack>
#include<queue>
#include<deque>
#include<set>
#include<unordered_set>
#include<map>
#include<unordered_map>
#include<bitset>
#include<utility>
using namespace std;
//---------------------------------------------------------
#define inf 0x3f3f3f3f
const double pi = acos(-1.0);
typedef double db;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int, int> pii;
typedef vector<int> vi;
ll gcd(ll a, ll b) { return b ? gcd(b, a % b) : a; }
int gcd(int a, int b) { return b ? gcd(b, a % b) : a; }
//---------------------------------------------------------
int n;
int main()
{
ios_base::sync_with_stdio(false), cin.tie(0);
cin >> n;
priority_queue<int, vi, greater<int>> pq;//小根堆优先队列
for (int i = 0; i < n; ++i)
{
int x;
cin >> x;
pq.push(x);
}
int res = 0;
while (pq.size() >= 2)//
{
//每次找到值最小的两个节点a和b
int a = pq.top();
pq.pop();
int b = pq.top();
pq.pop();
res += a + b;
pq.push(a + b);//将每次合并后的重量压入堆
}
cout << res << endl;
return 0;
}