完全背包问题

结合以下01背包的分析方式,我们也可以这样思考:
006eb5E0gy1g7yyd0jjcyj30wk0fpdhc.jpg

优化思路
我们列举一下更新次序的内部关系:

f[i , j ] = max( f[i-1,j] , f[i-1,j-v]+w , f[i-1,j-2*v]+2*w , f[i-1,j-3*v]+3*w , .....)
f[i , j-v]= max( f[i-1,j-v] , f[i-1,j-2*v] + w , f[i-1,j-3*v]+2*w , .....)
由上两式,可得出如下递推关系:
f[i][j]=max(f[i-1][j], f[i,j-v]+w)
有了上面的关系,那么其实第三重k循环可以不要了,核心代码优化成这样:

for(int i=1;i<=n;++i)
    {
        for(int j=0;j<=m;++j)
        {
            if(j<v[i]) dp[i][j] = dp[i-1][j];
            else dp[i][j] = max(dp[i-1][j], dp[i][j-v[i]]+w[i]);
        }
    }

这个代码和01背包的非优化写法很像,对比一下,下面是01背包的核心代码

for(int i = 1; i <= n; i++) 
        for(int j = 0; j <= m; j++)
        {
            if(j < v[i]) //  当前背包容量装不进第i个物品,则价值等于前i-1个物品
                f[i][j] = f[i - 1][j];
            else // 能装,需进行决策是否选择第i个物品   
                f[i][j] = max(f[i - 1][j], f[i - 1][j - v[i]] + w[i]);
        }           

两个代码其实只有一句不同(注意下标)

f[i][j] = max(f[i][j],f[i-1][j-v[i]]+w[i]);//01背包

f[i][j] = max(f[i][j],f[i][j-v[i]]+w[i]);//完全背包问题

因为和01背包代码很相像,我们很容易想到进一步优化。核心代码可以改成下面这样

 for(int i = 1 ; i<=n ;i++)
    for(int j = v[i] ; j<=m ;j++)//注意了,这里的j是从小到大枚举,和01背包不一样
    {
            f[j] = max(f[j],f[j-v[i]]+w[i]);
    }

时间复杂度:

O ( n m ) O(nm) O(nm)

综上所述,完全背包的最终写法如下:

当空间优化到一维时,只有完全背包问题的体积是从小到大循环的

#include<iostream>
using namespace std;
const int N = 1010;
int f[N];
int v[N],w[N];
int main()
{
    int n,m;
    cin>>n>>m;
    for(int i = 1 ; i <= n ;i ++)
    {
        cin>>v[i]>>w[i];
    }

    for(int i = 1 ; i<=n ;i++)
    for(int j = v[i] ; j<=m ;j++)
    {
            f[j] = max(f[j],f[j-v[i]]+w[i]);
    }
    cout<<f[m]<<endl;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值