结合以下01背包的分析方式,我们也可以这样思考:
优化思路
我们列举一下更新次序的内部关系:
f[i , j ] = max( f[i-1,j] , f[i-1,j-v]+w , f[i-1,j-2*v]+2*w , f[i-1,j-3*v]+3*w , .....)
f[i , j-v]= max( f[i-1,j-v] , f[i-1,j-2*v] + w , f[i-1,j-3*v]+2*w , .....)
由上两式,可得出如下递推关系:
f[i][j]=max(f[i-1][j], f[i,j-v]+w)
有了上面的关系,那么其实第三重k
循环可以不要了,核心代码优化成这样:
for(int i=1;i<=n;++i)
{
for(int j=0;j<=m;++j)
{
if(j<v[i]) dp[i][j] = dp[i-1][j];
else dp[i][j] = max(dp[i-1][j], dp[i][j-v[i]]+w[i]);
}
}
这个代码和01背包的非优化写法很像,对比一下,下面是01背包的核心代码
for(int i = 1; i <= n; i++)
for(int j = 0; j <= m; j++)
{
if(j < v[i]) // 当前背包容量装不进第i个物品,则价值等于前i-1个物品
f[i][j] = f[i - 1][j];
else // 能装,需进行决策是否选择第i个物品
f[i][j] = max(f[i - 1][j], f[i - 1][j - v[i]] + w[i]);
}
两个代码其实只有一句不同(注意下标)
f[i][j] = max(f[i][j],f[i-1][j-v[i]]+w[i]);//01背包
f[i][j] = max(f[i][j],f[i][j-v[i]]+w[i]);//完全背包问题
因为和01背包代码很相像,我们很容易想到进一步优化。核心代码可以改成下面这样
for(int i = 1 ; i<=n ;i++)
for(int j = v[i] ; j<=m ;j++)//注意了,这里的j是从小到大枚举,和01背包不一样
{
f[j] = max(f[j],f[j-v[i]]+w[i]);
}
时间复杂度:
O ( n m ) O(nm) O(nm)
综上所述,完全背包的最终写法如下:
当空间优化到一维时,只有完全背包问题的体积是从小到大循环的
#include<iostream>
using namespace std;
const int N = 1010;
int f[N];
int v[N],w[N];
int main()
{
int n,m;
cin>>n>>m;
for(int i = 1 ; i <= n ;i ++)
{
cin>>v[i]>>w[i];
}
for(int i = 1 ; i<=n ;i++)
for(int j = v[i] ; j<=m ;j++)
{
f[j] = max(f[j],f[j-v[i]]+w[i]);
}
cout<<f[m]<<endl;
}