题意:
Windy 数定义:不含前导零 且 相邻两个数字之差至少为 2 的 正整数。
输入两个整数:A 、B
问:在 A 和 B 之间,包括 A 和 B,总共有多少个 Windy 数?
思路:
和前两题的思路一样,我们分别对 A - 1、B
两个数进行数位dp操作,求出 dp(B)
([0, B]
区间内Windy数的数量),dp(A-1)
([0, A-1]
区间内Windy数的数量)。
之后利用前缀和的思想,区间 [A, B]
内Windy数的数量即为:dp(B) - dp(A-1)
。
对于一个数 N
,我们将其每一位 从高位到低位依次取出放入 num
数组,假设 共有 n
位
假设我们 当前枚举到第 i
位,且 第 i
位上的数字为 x
,那么 对于答案中第 i
位数字 j
来说,有两类:
-
1:
0 ~ x - 1
(当然,如果第i
位是最高位,这里应该改成:1 ~ x - 1
,因为题目要求没有前导0
)
我们使用变量last
,只需 记录上一位的数字,然后枚举j
,如果abs(j - last) >= 2
就 累加答案res
:res += f[i+1][j]
。(f[i][j]
表示 一共有i
位,且最高位数字为j
的 满足windy数定义 的数个数) -
2:
x
-
此时显然不可以随意累加
res
(因为我们对其后位数字的情况无法判断),使last = x
,之后枚举后面的数位
注意一定要有的步骤:上述做完之后,由于上面的答案都是 n
位的,对于数位个数低于 n
的,再累加到答案 res
中就行
对于f[i][j]
的动规分析:
由上方分析过程我们知道我们需要有一种能够直接算出“左分支”答案的方法,考虑使用dp进行f[i][j]
的预处理:
-
f[i][j]状态表示:
f[i][j]
表示 一共有i
位,且最高位数字为j
的 满足windy数定义 的数的个数。 -
状态转移: 因为第
i
位是j
已经确定,考虑第i-1
位,设第i-1
位数字为k
,那么根据windy数定义只要满足abs(k-j) >= 2
就可以进行转移。 -
状态转移方程:
代码:
#include<bits/stdc++.h>
using namespace std;
const int N = 15;
typedef vector<int> vi;
#define pb push_back
#define pp pop_back
int f[N][N];
void init()
{
for(int i=0; i<=9; ++i) f[1][i] = 1;
for(int i=2; i<N; ++i)
{
for(int j=0; j<=9; ++j)
{
for(int k=0; k<=9; ++k)
{
if(abs(j-k) >= 2) f[i][j] += f[i-1][k];//根据状态转移,满足就加上
}
}
}
}
int dp(int n)
{
if(!n) return 0;//特判边界 规定 0 不算Windy数,且 0 不在使用区间内
vi num; while(n) num.pb(n%10), n /= 10;
int res = 0;//记录答案
int last = -2;//记录前面某种信息,由于Windy数只和前面相邻数有关,所以last只需记录上一个数即可,由于首位数字可以任意填充,此处只需将last赋值为一个和0~9每个数相比绝对值之差都 >=2的数即可
for(int i=num.size()-1; i>=0; --i)
{
int x = num[i];
for(int j=(i==num.size()-1); j<x; ++j)//枚举左分支
{
if(abs(j - last) >= 2) res += f[i+1][j];//从 i 到 0 一共 i+1 位数
}
if(abs(x - last) < 2) break;//不满足条件,直接break
last = x;//右分支
if(!i) ++res;
}
//<num.size()位的要特殊处理有前导 0 的数
for(int i=1; i<num.size(); ++i)
{
for(int j=1; j<=9; ++j)//i 位数,最高位一定不能为 0,从 1 开始枚举
{
res += f[i][j];
}
}
return res;
}
int main()
{
init();
int l, r;
cin>>l>>r;
cout<<dp(r) - dp(l-1)<<'\n';
return 0;
}