洛谷 P1892 [BOI2003]团伙(并查集变种 反集)

这篇文章探讨了一种利用并查集反集思想来解决人际关系中的团伙问题,通过理解朋友和敌人关系的传递规则,有效地合并朋友关系并避免混淆敌人关系,从而找出最多可能的团体数。

[BOI2003]团伙

题目描述

现在有 nnn 个人,他们之间有两种关系:朋友和敌人。我们知道:

  • 一个人的朋友的朋友是朋友
  • 一个人的敌人的敌人是朋友

现在要对这些人进行组团。两个人在一个团体内当且仅当这两个人是朋友。请求出这些人中最多可能有的团体数。

输入格式

第一行输入一个整数 nnn 代表人数。

第二行输入一个整数 mmm 表示接下来要列出 mmm 个关系。

接下来 mmm 行,每行一个字符 optoptopt 和两个整数 p,qp,qp,q,分别代表关系(朋友或敌人),有关系的两个人之中的第一个人和第二个人。其中 optoptopt 有两种可能:

  • 如果 optoptoptF,则表明 pppqqq 是朋友。
  • 如果 optoptoptE,则表明 pppqqq 是敌人。

输出格式

一行一个整数代表最多的团体数。

样例 #1

样例输入 #1

6
4
E 1 4
F 3 5
F 4 6
E 1 2

样例输出 #1

3

提示

对于 100%100\%100% 的数据,2≤n≤10002 \le n \le 10002n10001≤m≤50001 \le m \le 50001m50001≤p,q≤n1 \le p,q \le n1p,qn

题意:

我朋友的朋友是我的朋友,我敌人的敌人是我的朋友,最后输出团伙数量。注意,两个人在一个团体内当且仅当这两个人是朋友

思路:

本题很容易想到是边带权并查集,但实际上并不是,根据这道题最原始的题面,两个人之间其实是可以没有关系的:可以曾经没有遇见,或者警局不知道他们的关系。而洛谷上翻译说得像所有人都有关系。

在本题中可以积累到的经验:

  • 对于两个人之间的关系,可以不存在关系记录下不能合并的关系,再次找到时合并可以合并的人。
  • 对于两个人之间的关系,一定存在关系,用带权并査集

对于本题做法,我们引入一个新的做法:并查集的反集。

a 表示 a 的朋友集,a + n 表示 a 的敌人集

  • 如果 ab 是朋友,那么 ab 的朋友集 相连即可: p[Find(a)] = Find(b);
  • 如果 ab 是敌人,则 a 的敌人集与 b 的朋友集 相连,b 的敌人集与 a 的朋友集 相连,即: p[Find(a + n)] = Find(b)p[Find(b + n)] = Find(a)

最后统计有多少团伙时,1 ~ n 中(朋友集)所有 p[i] == i 的人数就是答案。因为根据题意,所有团伙一定会分布在朋友集中,因此 只要在朋友集中统计没有祖先的节点个数即可。

代码:

#define _CRT_SECURE_NO_WARNINGS 1
#include <bits/stdc++.h>

using namespace std;
//#define int long long
int n, m;
const int N = 1010;
int p[N << 1];

int Find(int x)
{
	if (p[x] != x) p[x] = Find(p[x]);
	return p[x];
}

signed main()
{
	int T = 1; //cin >> T;

	while (T--)
	{
		cin >> n >> m;
		int res = 0;
		for (int i = 1; i < N<<1; ++i) p[i] = i;
		for (int i = 1; i <= m; ++i)
		{
			char op[2]; int a, b;
			cin >> op >> a >> b;
			int pa = Find(a), pb = Find(b);
			int pan = Find(a + n), pbn = Find(b + n);
			if (*op == 'F')
			{
				p[pb] = pa;
			}
			else
			{
				p[pbn] = pa;
				p[pan] = pb;
			}
		}
		for (int i = 1; i <= n; ++i) if (p[i] == i) ++res;
		cout << res << '\n';
	}

	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值