问题及代码:
/*
copyright (t) 2016,烟台大学计算机学院
*All rights reserved.
*文件名称:cpp1.cpp
*作者:张相如
*完成日期:2016年9月8日
*版本号:v1.0
*问题描述:用递归算法求解汉诺塔问题,其复杂度可以求得为O(2^n) ,是指数级的算法。请到课程主页下载程序运行一下,体验盘子数discCount为4、8、16、20、24时在时间耗费上的差异,你能忍受多大的discCount。
*输入描述:无(盘子数已定义)
*程序输出:盘子需要移动的次数
*/
#include <stdio.h>
#define discCount 24 //数值分别改为4、8、12、16、20、24并运行结果
long move(int, char, char,char);
int main()
{
long count;
count=move(discCount,'A','B','C');
printf("%d个盘子需要移动%ld次\n", discCount, count);
return 0;
}
long move(int n, char A, char B,char C)
{
long c1,c2;
if(n==1)
return 1;
else
{
c1=move(n-1,A,C,B);
c2=move(n-1,B,A,C);
return c1+c2+1;
}
}
运行结果:
知识点总结:
算法的复杂度
心得体会:
在本次测试中,盘子的数量增加,会导致移动次数的增加,根据递归的原理,移动次数是以指数级增加的。这导致计算机的运算量急剧增加。当盘子增加到24个时,移动次数已经达到了16777215次,所以计算机无法立即出现结果。本实验主要是体验了算法的复杂度以及对于递归思想的理解。