第二周项目3体验复杂度 汉诺塔问题

问题及代码:

/*

copyright (t) 2016,烟台大学计算机学院

*All rights reserved.

*文件名称:cpp1.cpp

*作者:张相如

*完成日期:2016年9月8日

*版本号:v1.0

*问题描述:用递归算法求解汉诺塔问题,其复杂度可以求得为O(2^n) ,是指数级的算法。请到课程主页下载程序运行一下,体验盘子数discCount为4、8、16、20、24时在时间耗费上的差异,你能忍受多大的discCount。

*输入描述:无(盘子数已定义)

*程序输出:盘子需要移动的次数

*/

#include <stdio.h>
#define discCount 24              //数值分别改为4、8、12、16、20、24并运行结果
long move(int, char, char,char);
int main()
{
    long count;
    count=move(discCount,'A','B','C');
    printf("%d个盘子需要移动%ld次\n", discCount, count);
    return 0;
}

long move(int n, char A, char B,char C)
{
    long c1,c2;
    if(n==1)
        return 1;
    else
    {
        c1=move(n-1,A,C,B);
        c2=move(n-1,B,A,C);
        return c1+c2+1;
    }
}


运行结果:

知识点总结:

算法的复杂度

心得体会:

在本次测试中,盘子的数量增加,会导致移动次数的增加,根据递归的原理,移动次数是以指数级增加的。这导致计算机的运算量急剧增加。当盘子增加到24个时,移动次数已经达到了16777215次,所以计算机无法立即出现结果。本实验主要是体验了算法的复杂度以及对于递归思想的理解。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值