- 博客(835)
- 资源 (52)
- 收藏
- 关注

原创 浏览此博客者开年必时来运转,否极泰来
上 梁 祈 文伏以天地初开 阴阳交泰 一天星照人门凤凰子孙架高堂 年月方位定吉方天杀归天 地杀归地 年杀归年月杀归月逢山山飞逢水水飘 逢人人火发宅主喜洋洋 百子千孙富贵临禄马贵人齐齐到 添进产业人丁旺堆金积玉千万贯 子孙及第状元郎腰悬金印进朝堂 持笏执印近帝王郭璞先师亲祝愿 荣华富贵寿连绵年通月利日吉时良 请鲁班上金揩架金梁华堂美丽真秀气 牛马穴畜满山岗富贵田园日日进 儿孙...
2019-01-31 19:26:39
1159
9

原创 python pygame实现简单的网游
此示例为简单的实现游戏服务器端和客户端的消息同步,使用自定定义协议,引入了twisted网络框架,还有诸多不足(其实就是半成品)。资源下载地址:http://download.csdn.net/download/jailman/10194853截图服务器端:# coding=utf8'''Game server'''import thr
2018-01-08 17:36:24
79776
6

原创 37行代码实现一个简单的打游戏AI
不废话,直接上码,跟神经网络一点关系都没有# coding=utf8from random import randint as rintimport pygamefrom pygame.locals import *class MySprite(pygame.sprite.Sprite): def __init__(self): pygame.sprit
2017-12-15 17:04:43
85652
1

原创 HTTPS双向认证+USB硬件加密锁(加密狗)配置
环境: Ubuntu14.04,apache2.4.7, openssl1.0.1f安装apache2apt-get install apache2 -y一般openssl默认已经安装开启apache的ssl模块和ssl站点a2enmod ssla2ensite default-ssl.conf创建证书目录mkdir /etc/apache2/certs
2017-09-06 13:52:53
229628
2
原创 高效利用AI处理大型编程任务
在大型编程任务中,通过将任务细分为适合AI上下文处理能力的子任务并整合生成目标应用,已成为当前AI辅助开发的主流方法。
2025-03-21 14:50:17
709
原创 AI 代理错误的复合效应
AI代理错误的复合效应揭示了当前技术从“实验室表现”到“现实可靠性”的核心瓶颈。解决这一问题需要从数学建模、系统架构、数据质量多维度突破,同时建立适应动态环境的评估与纠错体系。正如 Hassabis 所言:“在开放世界中,1%的错误率不是可接受的容错,而是灾难的种子。AI 代理错误的复合效应是指当AI系统执行多步骤任务时,即使每个步骤的错误率极低,错误会随着步骤叠加呈指数级放大,最终导致整体结果不可靠的现象。
2025-03-21 14:08:39
445
原创 盘点空间理解能力上表现最突出的模型
通过开源推动行业协作,为具身智能提供基础训练支持。未来,随着认知地图生成、多模态合成数据等技术的发展,空间智能有望在机器人、自动驾驶等领域实现更广泛应用。为代表,分别在闭源和开源领域占据优势。当前空间理解能力的领先模型以。
2025-03-21 14:00:53
288
原创 AI与人类认知能力的本质区别
当前AI推理仍是「基于统计的工具性智能」,在封闭任务中可超越人类(如围棋、代码生成),但开放式复杂场景仍依赖人类思维的生物-社会耦合特性。神经符号系统:结合深度学习与形式逻辑(如MIT的因果推理框架)具身认知模型:通过机器人实体交互获取物理世界经验情感计算升级:模拟边缘系统的生物激励机制正如神经科学家安东尼奥·达马西奥所言:「人类智能是理性与情感的共生体,剥离情感的『纯逻辑AI』永远无法复现完整的人类思考。
2025-03-21 11:30:29
406
原创 AI与人类记忆的比较与实现
大模型在短期上下文处理上已超越人类容量极限,但长期记忆仍依赖外部系统协同。未来通过生物启发式架构、持续学习与混合存储技术的结合,或将实现“记忆自由”——既能精准处理百万字文档,又能像人类一样跨越时间与场景提取关键信息。
2025-03-21 10:13:24
462
原创 谁在鼓吹AI可以替代程序员
程序员的未来不在于抗拒技术,而在于通过掌握AI工具实现能力跃迁——正如腾讯团队通过AI协作实现人均编码效率提升41.34%的实证。与其被替代论误导,不如聚焦如何成为“AI超级个体”。鼓吹“AI替代程序员”的群体中,多数缺乏对技术细节和工程实践的深度认知。
2025-03-21 10:03:06
326
原创 AGI成立的条件
技术瓶颈:现有模型在推理一致性(如数学基础题仍会出错)和多模态交互上仍有缺陷;资源限制:AGI研发需突破算力与数据质量限制,例如训练成本优化和跨领域数据整合。AGI的最终实现需融合技术突破(如强化学习与多模态融合)与伦理治理框架,其路径可能比预期更复杂,但近期进展(如推理能力提升与成本下降)已显著缩短了时间线。
2025-03-21 09:49:25
226
原创 AI辅助的逆向分析
AI大模型在二进制逆向工程中主要扮演辅助角色,能够提升反编译代码的可读性与分析效率,但无法完全替代人工逆向工作。未来随着多模态模型(结合代码、控制流图、动态执行轨迹)的发展,这一领域有望实现更高效的自动化重构。
2025-03-20 19:27:00
307
原创 DeepSeek的非传统图片模态支持
DeepSeek-R1 671B的图像识别需要依赖CLIP等预处理工具对图片进行特征提取和封装后才能读取,其多模态处理并非端到端实现。
2025-03-20 16:30:10
580
原创 Milvus 向量数据库使用示例
该方案已在 100 万级文本数据集验证,检索延迟 <50ms(RTX 4090 GPU 环境)。实际部署时需注意调整 chunk_size 和 nprobe 参数以适应业务场景。
2025-03-20 10:29:41
372
原创 大模型AI的局限性
大模型AI的“聪明”本质是统计学意义上的高效模式匹配,而非真正的理解或创造。其发展受制于物理规律(算力、能源)、工程瓶颈(上下文长度)和认知科学(类人思维)的三重约束。突破这些限制需多学科协同:硬件革新降低算力门槛,认知模型重构逼近人类思维,能源革命支撑可持续发展。正如OpenAI首席科学家Ilya Sutskever所言:“当前AI是‘统计的巨人,认知的婴儿’。”未来十年,AI或将跨越从“工具”到“伙伴”的临界点,但这一进程注定伴随技术、伦理与生态的复杂博弈。
2025-03-19 13:47:33
694
原创 Qwen-VL人脸识别python示例
根据Qwen-VL多模态大模型的视觉理解能力,结合Python的Transformers库,可以快速实现人脸识别功能。
2025-03-18 16:19:44
329
原创 大脑控制身体应急动作的延迟
人脑应对危险的肢体反应延迟范围从12毫秒(无意识本能)到500毫秒(复杂意识决策)不等,具体取决于神经通路类型及情境复杂度。快速通路以生存优先牺牲精确性,而慢速通路通过意识权衡提升准确性。以上数据综合神经科学实验与行为学研究,实际个体差异可能受年龄、健康状况等影响。
2025-03-18 15:36:35
321
原创 Function Calling的核心机制与挑战
使大模型从“纯文本生成”升级为“任务执行者”,但其落地仍面临稳定性、准确性和开发复杂度等挑战。未来需结合动态校验、意图增强和弹性架构设计,进一步提升可靠性。,使其能够通过自然语言理解用户意图,触发外部工具或 API 调用。Function Calling 的本质是。Function Calling 通过。
2025-03-18 15:15:17
400
原创 提示deepseek生成完整的json用于对接外部API
通过精准的提示词设计(字段过滤、格式约束)、动态验证机制(自检与修正)和官方模板参考,可有效确保DeepSeek生成的JSON纯净无冗余。
2025-03-18 10:46:36
355
原创 deepseek连续对话与API调用机制
通过合理的上下文管理策略,可在保证对话质量的前提下,将API调用成本降低40%-60%。建议结合业务场景特点选择合适的优化层级。设计,每次请求视为独立会话。若需维持对话连续性,必须由客户端主动管理并传递完整上下文。这与HTTP协议的无状态特性一致。在调用DeepSeek等大模型进行连续对话时,是否需要每次上传系统提示和对话历史取决于API的设计机制。实验表明,采用动态上下文管理可降低63%的Token消耗,同时保持对话连贯性在85%以上。DeepSeek的API基于。
2025-03-17 17:18:16
1510
转载 DeepSeek官方实用集成
一个开源 SDK,可使用**全同态加密(FHE)**对 AI 进行加密,实现代理共识。FHE被誉为密码学的圣杯,能够在无需解密的情况下直接对加密数据进行计算。借助FHE,代理在使用Deepseek时可以保护隐私,同时确保模型的完整性和计算结果的一致性,无需暴露任何数据。将 DeepSeek 大模型能力轻松接入各类软件。来获取您的 API key。采用纯Rust实现,并可在。
2025-03-17 15:27:54
64
原创 Page Assist中关键参数推荐配置
所有API调用必须设置临时系统提示词,这是激活DeepSeek-R1完整能力的关键。限制每步生成的候选词数量(如设50则只考虑概率前50的词)。建议游戏对话场景设为40-60,技术文档生成可放宽至100。基于概率累积的动态截断(0.9表示保留概率总和达90%的候选词)。启用后将模型权重锁定在内存,提升10%-15%推理速度,但需要root权限。基于熵值的截断系数(推荐0.9-0.95),过高会导致输出过于保守,建议技术问答场景用0.92。固定生成结果的确定性(默认-1随机)。本地部署时分配GPU数量。
2025-03-17 15:08:28
308
原创 双模型协作机制的deepseek图片识别
deepseek自动生成包含关键视觉元素的结构化文本描述的过程,本质上是。这一流程实现了从像素到语义、再从语义到推理的完整跨模态理解链条。
2025-03-17 14:35:43
621
原创 黑客攻击deepseek服务原理解析
黑客可通过操纵大模型的连续对话上下文回顾机制,构造恶意请求以触发模型进入或,从而形成对对话服务的DoS攻击(拒绝服务攻击)。这一攻击方式的核心在于利用大模型对上下文处理机制的脆弱性,通过极低的攻击成本实现资源耗尽。
2025-03-17 10:13:04
2280
1
原创 2025年主流向量数据库
MilvusQdrantWeaviatePinecone腾讯云VectorDBChromaFaissMongoDB AtlasPostgreSQL扩展
2025-03-14 11:26:29
394
1
原创 API调用大模型推理与第三方API实现业务整合
基于Python实现大模型推理与第三方API调用的集成,需要结合Function Call机制与提示词工程。
2025-03-14 10:44:32
324
原创 主流大模型上下文窗口限制与多轮对话机制解析
建议将复杂任务分配给高性价比模型(如DeepSeek处理长文本,GPT-4处理逻辑推理),通过混合调用策略平衡成本与效果。多轮对话的Token消耗遵循。
2025-03-14 10:12:28
432
原创 简要概括提示词工程的基本原理
其核心原理在于大语言模型(LLM)对输入文本的敏感性,通过提示词中的关键词、逻辑结构等要素,触发模型参数中对应的知识模块。例如要求模型"用Python代码实现冒泡排序"时,提示词中的"Python""冒泡排序"等关键词会激活模型编程知识库。网页2的典型案例中,"专业数据资产梳理员"的角色设定确立了认知视角,"流程对象梳理"的任务描述框定输出范围,"表格模板"则规范了信息组织形式。如网页3提出的Markdown结构化提示法,将交互逻辑转化为可继承的代码化组件,形成可扩展的"提示词知识库"。
2025-03-13 16:10:03
283
转载 提示工程(Prompt Engineering)最全综述:本质、技术、最佳实践
提示工程(prompt engineering)则是一门精心雕琢提示的艺术与科学。它不仅仅是简单地构造输入文本,更是涉及到对模型行为的深入理解,以及对各种影响因素的综合考量。通过不断地实验、优化,提示工程师能够设计出最适合特定任务和场景的提示,引导大语言模型生成精准、富有洞察力的输出。这是一个迭代的过程,需要不断地调整和改进提示,以适应不同的需求和模型特性。二、控制大语言模型输出:配置是关键。
2025-03-13 15:52:31
61
原创 AI自动化、资本短视、三输与破局
当前AI应用中的一个深层矛盾:工程师使用AI将很专业的任务变成小白可以操作的工作,然后资本方给小白很少的钱把工程师裁掉了,然而小白不懂底层,出问题几乎无法修复。由此,技术普及与专业能力之间的断层引发了"三输"困境。
2025-03-13 15:40:48
999
pageassist-2025.2.7-chrome-edge用
2025-02-07
sysak开源系统诊断工具
2022-07-15
windows bt工具.zip
2021-12-27
leafserver+cocos2d客户端简单网游验证学习.zip
2021-12-21
Metaverse-digital-identity-white-paper-v1.0-EN.pdf
2021-09-14
升腾c92BIOS-用于不能usb启动的情况
2020-10-23
Intel CPU spectre漏洞利用方法
2018-07-31
边缘计算电子书大全
2018-04-25
2018年网络犯罪常用漏洞前十(英文报告)
2018-04-13
适合破解新手的160个crackme练手
2018-04-10
mjpegstream android客户端
2017-10-30
java.media
2017-09-06
DNScrypt加密和相关脚本
2017-09-05
google双因子验证totp生成函数集合
2017-08-23
wooyun知识库超级爬虫
2017-05-09
python多进程探测端口写日日志(带cmd颜色显示)
2017-04-05
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人