给你一个整数数组 nums
,找到其中最长严格递增子序列的长度。
子序列 是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。例如,[3,6,2,7]
是数组 [0,3,1,6,2,2,7]
的
子序列
。
示例 1:
输入:nums = [10,9,2,5,3,7,101,18] 输出:4 解释:最长递增子序列是 [2,3,7,101],因此长度为 4 。
示例 2:
输入:nums = [0,1,0,3,2,3] 输出:4
示例 3:
输入:nums = [7,7,7,7,7,7,7] 输出:1
思路:这道题和上一道的区别就在于是否连续,这道题可以不连续,题目说可以删除某些元素不改变其余元素,仍是递增即可,做这类题最忌讳的是真的去删除,我只要不用这个不满足的元素,那我不就是变相的把你删掉了嘛。
那这道题怎么解决呢,首先感觉暴力破解也有点麻烦,那就想到动规呗。上一道题的动规是必须连续,所以每次都比较相邻的两个元素,这道题可以不连续,那我们就用两个循环,一个表示结尾元素,一个遍历从头到这个元素之前的全部元素,如果有递增,子序列长度就+1
首先一样的,dp[i]表示以nums[i]作为结尾元素的最大递增子序列的长度为dp[i]。
然后是递推公式,上面说了,两层循环,然后如果有递增,即元素小于结尾元素,nums[i]>nums[j],子序列长度就+1。
初始化,没有区别,dp[0] = 1,在创建dp数组的时候,我把每个数都初始化为1了,这里就不需要多余的一步去专门赋值dp[0]了。
遍历顺序:很明显从前往后遍历,然后dp数组就是以每个数为结尾的最大递增子序列的长度,返回dp数组里的最大值即可。
代码(Python):
class Solution(object):
def lengthOfLIS(self, nums):
if len(nums) == 0:
return 0
dp = [1 for _ in range(len(nums))]
for i in range(1,len(nums)):
for j in range(i):
if nums[i] > nums[j]:
dp[i] = max(dp[i],dp[j]+1)
return max(dp)