键概念 要分析算法的复杂度,通常需要分析循环的运行.一,假如,某个循环体的复杂度是O(1),那么这个循环的时间复杂度就是O(n). for(int i = 0; i < n; i++){ //一些列复杂度为O(1)的步骤.... }通常,如果某个循环结构以线性方式运行n次,并且循环体的时间复杂度都是O(1),那么该循环的复杂度就是O(n).即使,该循环跳过某些常数部分,只要跳过的部分是线性的,那么该循环体的时间复杂度仍就是O(n).比如 int count = 1; while(count < n){ count += 2; //一些列复杂度为O(1)的步骤.... }时间复杂度还是O(n)二,如果循环体的复杂度是对数级的 如下 int count = 1; while(count < n){ count *= 2; //一些列复杂度为O(1)的步骤.... }该循环是O(logn)的, 通常情况是2为底的 也就是O(log2n)关键概念 循环的时间复杂度等于该循环体的复杂度乘以循环的次数...三,嵌套循环复杂度分析... for(int count1 = 0; count1 < n; count1++){ for(int??count2 = 0; count2 < n; count2++){ //一些列复杂度为O(1)的步骤.... } }在这种情况下应该 先计算内层循环的时间复杂度,然后用内层的复杂度乘以外层循环的次数.最内层循环体的时间复杂度都是O(1)所以循环n次也就是O(n) 在乘以最外层for的n次.所以得出结论 2层嵌套循环的时间复杂度 = O(1) * n*n = O(n2) 在分析嵌套循环复杂度的时候必将内层循环和外层虚幻都考虑进来四,方法调用的复杂度分析假如有如下代码 for(int count = 0; count < n; count++){ printsum(n); }循环的阶次等于循环体的阶次乘以循环的次数.像这种情况循环体里头是一个方法的调用,那么这个循环体的时间复杂度如何呢!这个方法就是打印1~n的和.所以必须先计算方法体的的时间复杂度. public void printsum(int count){ int sum = 1; for(int i= 0; i sum += i; } System.out.print(sum); }记住,只有可运行的语句才会增加时间复杂度,因此,上面方法里的内容除了循环之外,其余的可运行语句的复杂度都是O(1),所以printsum的时间复杂度 = for的 O(n)+O(1) = 忽略常量 = O(n)但是回想一下,我们让程序打印1~n的和不需要用for循环 记得初中数学课上老师就给出了个公式 num = n*(n+1)/2改 public void printsum(int count){ int sum = 1; sum = count * (count+1)/2; System.out.print(sum); }此时的 printsum 方法的阶次就是O(1) -------->意味着最外层调用此方法的循环复杂度就从 O(n2) 改良为 O(n)这是一个很大的提高.从这点就可以看出简单算法和高效算法之间的差别了.五如果一个方法体是由多个方法调用and多个循环组成的,那么其复杂度又如何! public void suixiangMethod(int n){ printsum(n);//1.1 for(int i= 0; i printsum(n); } for(int i= 0; i for(int k=0; k System.out.print(i,k); } }suixiangMethod 方法的时间复杂度需要计算方法体的各个成员的复杂度?也就是1.1+1.2+1.3 = O(1)+O(n)+O(n2) ----> 忽略常数 和 非主要项 == O(n2)
算法的复杂度
最新推荐文章于 2018-11-23 00:23:58 发布