寻找路线 简单的动态规划问题

题目
寻找路线

描述
小明在A点,他要到B点。从A到B有许多交错的路, 这些交错的路形成了有很多1*1的小正方形组成的长方形,长为l,宽为w。 他想知道A点到B点有几条最短路线可走。

输入格式
两个正整数l和w(0 < w <= l <= 33)。

输出格式
A点到B点的 最短路线的条数。

输入样例
3 2

输出样例
10

题目分析
明显的一道动态规划题目,
简单分析,发现左边和上面的相邻点加起来即为该点可走路线,有词得出状态转移方程:

dp[i][j]=dp[i-1][j]+dp[i][j-1];

坑点
开数组的大小

附上AC代码
代码如下

#include <iostream>
#include <cmath>
#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;
int l , w;
long long dp [33] [33]; //得到最终答案有可能超出int类型定义,防止数值越界
int main(){
	cin >> l >> w;
	for(int i=0;i<=w;i++){
		for(int j=0;j<=l;j++){
			dp[0][j]=1;
			dp[i][0]=1; 
		} //数组路线初始化
	}
	for(int i=1;i<=w;i++){
		for(int j=1;j<=l;j++){
			dp[i][j]=dp[i-1][j]+dp[i][j-1]; //运用状态转移方程进行实现
		}
	}

	cout<<dp[w][l]<<endl; //输出
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值