基于Python Django 的全国房价大数据可视化系统(附源码,部署)

博主介绍:✌程序员徐师兄,7年大厂开发经验。全网粉丝12w+,CSDN博客专家,同时活跃在掘金、华为云、阿里云、InfoQ等平台,专注Java技术和毕业项目实战分享✌
🍅文末获取源码联系🍅
👇🏻 精彩专栏推荐订阅👇🏻 不然下次找不到哟


简介

这套系统是用 Python + Django 搭的,目标是帮咱们把广州、杭州和北京的二手房价格扒下来,然后通过酷炫的图表一键展示动态走势。后台用 Django 提供接口,前端用 HTML 搭页面,图表部分用 ECharts,数据暂时放 SQLite,结构轻巧又好上手。整个项目实战性强,新手大学生拿来做毕业设计、课程设计都很合适。

房价可视化

系统能自动爬取各大房产网站二手房最新报价,结合 Pandas 做数据清洗、聚合,再把结果喂给前端。用户一打开页面,就能看到不同城市按时间、区域、房型分类的均价折线图、柱状图,直观了解市场波动。


技术栈

技术用途说明
Django后端框架处理业务逻辑、提供 RESTful 接口
Django 文档
快速入门
SQLite数据存储轻量级嵌入式数据库,免安装
Pandas数据处理清洗、统计、聚合
Pandas 教程
PyMySQLMySQL 连接(可选)若要用 MySQL,请安装并替换 SQLite
Requests网络请求发起爬虫 HTTP 请求
BeautifulSoup4网页解析从 HTML 中抽取房源信息
ECharts前端可视化折线图、柱状图、区域热力图
ECharts 入门
HTML/CSS/JS前端页面展示图表和交互

系统模块

整个可视化系统一共分三个核心模块:

  1. 数据采集

    • 使用 Requests + BeautifulSoup4 自动爬取指定网站的二手房列表页和详情页。
    • 加入随机 UA、延时(time.sleep(random.uniform(1,3)))和异常重试,防止被反爬。
  2. 数据处理

    • 用 Pandas 将原始爬取的字段(小区名、区域、价格、面积、发布时间等)做清洗和标准化。
    • 对空值字段赋 NaN,统一时间格式,拆分房型、楼层等;
    • 按城市+日期+区域聚合,计算每日均价、涨跌幅。
  3. 图表展示

    • 后端 Django 提供 JSON 接口 /api/price-trend?city=北京&start=2024-01-01&end=2024-05-01,返回均价时序。
    • 前端用 ECharts 画折线图、柱状图、热力图,一页多图自由切换;
    • 支持按房型筛选、按区县对比。

核心代码示例

爬虫示例(Requests + BeautifulSoup)

import random, time, requests
from bs4 import BeautifulSoup

def fetch_page(url):
    headers = {'User-Agent': get_random_ua()}
    resp = requests.get(url, headers=headers, timeout=10)
    resp.raise_for_status()
    return resp.text

def parse_list(html):
    soup = BeautifulSoup(html, 'html.parser')
    for item in soup.select('.list-item'):
        yield {
            'title': item.select_one('.title').get_text(strip=True),
            'price': item.select_one('.price').get_text(strip=True),
            'area': item.select_one('.area').get_text(strip=True),
            'detail_url': item.select_one('a')['href']
        }

# 定时拉取
for city in ['gz', 'hz', 'bj']:
    for page in range(1, 6):
        url = f'https://{city}.ershoufang.example.com/page/{page}/'
        html = fetch_page(url)
        for record in parse_list(html):
            save_to_db(city, record)
        time.sleep(random.uniform(1, 3))

数据清洗与聚合(Pandas)

import pandas as pd
from sqlalchemy import create_engine

# 连接 SQLite
engine = create_engine('sqlite:///house.db')

df = pd.read_sql('select * from listings', engine)
# 清洗
df['price'] = df['price'].str.replace('万', '').astype(float)
df['date'] = pd.to_datetime(df['date'])
df['district'] = df['title'].apply(lambda s: s.split()[1])

# 聚合计算每日均价
trend = df.groupby(['city', df['date'].dt.date]).price.mean().reset_index()
trend.to_sql('price_trend', engine, if_exists='replace', index=False)

后端接口(Django View)

from django.http import JsonResponse
from .models import PriceTrend

def price_trend(request):
    city = request.GET.get('city')
    start = request.GET.get('start')
    end = request.GET.get('end')
    qs = PriceTrend.objects.filter(city=city, date__range=[start, end]).order_by('date')
    data = list(qs.values('date', 'price'))
    return JsonResponse({'status': 'ok', 'data': data})

前端 ECharts 展示

<div id="chart" style="width: 100%; height: 400px;"></div>
<script>
fetch(`/api/price-trend?city=北京&start=2024-01-01&end=2024-05-01`)
  .then(res => res.json())
  .then(({ data }) => {
    const dates = data.map(d => d.date);
    const prices = data.map(d => d.price);
    var myChart = echarts.init(document.getElementById('chart'));
    myChart.setOption({
      title: { text: '北京二手房均价走势' },
      xAxis: { type: 'category', data: dates },
      yAxis: { type: 'value' },
      series: [{ data: prices, type: 'line', smooth: true }]
    });
  });
</script>

效果展示

登录与数据管理

登录注册

首页概览

系统首页

动态可视化

房价折线

后台管理

后台管理


源码获取:

大家点赞、收藏、关注、评论啦 、查看👇🏻获取联系方式👇🏻

👇🏻 精彩专栏推荐订阅👇🏻 不然下次找不到哟

2022-2024年最全的计算机软件毕业设计选题大全:1000个热门选题推荐✅

Java项目精品实战案例《100套》

Java微信小程序项目实战《100套》

Python项目实战《100套》

感兴趣的可以先收藏起来,还有大家在毕设选题,项目以及文档编写等相关问题都可以给我留言咨询,希望帮助更多的人

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序员徐师兄

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值