题目描述
给你 n 个数字
每次可以合并相邻的两个数字,
即为这两个数字的和代替他们原来的位置,
这种操作耗费的代价为合并的两个数字之和
求最终将一串数组合并成为一个数字消耗的最小代价。
输入
多组测试数据。
每组输入数据有两行
第一行为一个整数 n(1≤n≤100),表示 n 个数
第二行为空格隔开的n个整数a1…an,表示数字大小(1<=ai<=100)
输出
对于每组数据,输出一行,只有一个数
为最终将一串数组合并成为一个数字消耗的最小代价
输入样例
3
1 1 1
4
1 1 1 1
6
1 1 1 1 1 1
输出样例
58
16
用dp[i][j]表示从第i个数字到第j个数字的最小合并代价,可以这样理解:
最后一次合并时,必定是两个数字,一个从i ~ k 合并得到,一个从 k+1 ~ j 合并得到,且这两个数字的和一定是这一区间内数字之和
这样解就明朗了,dp[i][k]+dp[k+1][j],k从i取到j-1,取其中最大值加上区间数字和就是dp[i][j]
#include <cstdio>
#include <iostream>
using namespace std;
int n;
int a[100];
int sum[100];
int dp[100][100];
int min_merge(int l,int