OJ3RD 1157 合并相邻数字 - DP

该博客介绍了如何解决一个编程竞赛题目——OJ3RD 1157,题目要求合并相邻数字以达到最小代价。博主通过动态规划(DP)的方法,详细阐述了求解过程,包括状态转移方程和解题思路,展示了如何找到从第i个数字到第j个数字的最小合并代价。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目描述

给你 n 个数字
每次可以合并相邻的两个数字,
即为这两个数字的和代替他们原来的位置,
这种操作耗费的代价为合并的两个数字之和
求最终将一串数组合并成为一个数字消耗的最小代价。

输入

多组测试数据。
每组输入数据有两行
第一行为一个整数 n(1≤n≤100),表示 n 个数
第二行为空格隔开的n个整数a1…an,表示数字大小(1<=ai<=100)

输出

对于每组数据,输出一行,只有一个数
为最终将一串数组合并成为一个数字消耗的最小代价

输入样例

3
1 1 1
4
1 1 1 1
6
1 1 1 1 1 1

输出样例

5
8
16

用dp[i][j]表示从第i个数字到第j个数字的最小合并代价,可以这样理解:

最后一次合并时,必定是两个数字,一个从i ~ k 合并得到,一个从 k+1 ~ j 合并得到,且这两个数字的和一定是这一区间内数字之和

这样解就明朗了,dp[i][k]+dp[k+1][j],k从i取到j-1,取其中最大值加上区间数字和就是dp[i][j]

#include <cstdio>
#include <iostream>
using namespace std;
int n;
int a[100];
int sum[100];
int dp[100][100];

int min_merge(int l,int
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值