Jason__Liang的博客

本人电子系,只为一学生。心喜计算机,小编以怡情。

attention 理解 根据pytorch教程seq2seq源码

https://blog.csdn.net/wuzqchom/article/details/75792501 http://baijiahao.baidu.com/s?id=1587926245504773589&wfr=spider&for=p...

2018-08-20 10:20:54

阅读数 1778

评论数 1

pytorch lstm crf 代码理解

好久没有写博客了,这一次就将最近看的pytorch 教程中的lstm+crf的一些心得与困惑记录下来。 原文 PyTorch Tutorials 参考了很多其他大神的博客,https://blog.csdn.net/cuihuijun1hao/article/details/79405740...

2018-08-17 10:30:17

阅读数 1398

评论数 6

python html表格 转化

在做html解析时,遇到了需要将html的<table> 标签转成需要的形式。这里是转成   ('      增持方式     ', '      竞价交易     ')  这种形式。接下来的代码是可以处理可变长的table,思路很简单,可以根据自己的需...

2018-06-23 15:24:48

阅读数 1290

评论数 1

机器学习基石(林轩田)第十六章 笔记与感悟总结

16.1 Three Learning Principles - Occam’ Razor简单的hypothesis,简单的model简单的model。当输入乱乱的资料时,Ein无法很小。因此,如果用简单的模型,能够分开资料,那么就说明其中会有某种规律。而不能分开,则说明没有啥规律。因为复杂的模型...

2018-05-31 20:12:31

阅读数 107

评论数 0

机器学习基石(林轩田)第十五章 笔记与感悟总结

15.1 Validation - Model Selection Problem我们为了解决过拟合的问题,我们提出了regularization。我们不只关注Ein,而是在Ein上面加上一个regularizer,一起做minimize。这样可以有效的减小model complexity我们面临...

2018-05-29 10:12:42

阅读数 99

评论数 0

机器学习基石(林轩田)第十四章 笔记与感悟总结

14.1 Regularization - Regularized Hypothesis Set我们可以看出,右侧的数据拟合的并不好,因为我们用来拟合的方程维数太高!!!我们想让右侧的overfit 变成左侧的看起来不错的 ‘regularized fit’。我们想从高次的H慢慢回退到低次的Hyp...

2018-05-28 18:25:52

阅读数 191

评论数 0

机器学习基石(林轩田)第十三章 笔记与感悟总结

13.1 Hazard of Overfitting - What is Overfitting我们可以看出,虽然Ein为0,貌似算法的表现很好,但是实际上可以看出,我们的拟合曲线和target一点点也不像!!!!这意味着,我们有很高的Eout。不好的“举一反三”(generation)。我们从紫...

2018-05-28 11:24:48

阅读数 84

评论数 0

机器学习基石(林轩田)第十二章 笔记与感悟总结

12.1 Nonlinear Transformation - Quadratic Hypotheses我们用非线性的方法来做分类。但是也有其他的情况,无法利用线性的方法来进行分割。我们不用线的方式,而是用其他的方法,将数据进行分割。我们想通过使用圆圈的方式来进行分类。这样我们要重新改写之前所有的...

2018-05-28 09:45:19

阅读数 128

评论数 0

机器学习基石(林轩田)第十一章 笔记与感悟总结

11.1 Linear Models for Classification - Binary Classificationstochastic 随机的linear classification是一个NP hard问题,因此如何找到一种方法,能够使相对容易的linear regression 和 l...

2018-05-27 20:28:53

阅读数 78

评论数 0

机器学习基石(林轩田)第十章 笔记与感悟总结

10.1 Logistics Regression - Logistics Regression Problem判断有还是没有心脏病,即二元分类问题。左上角说明有噪音。我们比较在意的是错误率的多少。我们不是很强硬的就0或者1,而是变成了一个值,值的大小即概率值。我们得不到理想中的数据,而是实际上有...

2018-05-26 16:00:05

阅读数 65

评论数 0

机器学习基石(林轩田)第九章 笔记与感悟总结

9.1 Linear Regression - Linear Regression Problem我们花力气在二元分裂的VC Bound是可以用在各种情形,也可以用在线性回归。输出不是二元了,而是一个实数。输出空间就是一个实数。我们怎么做到机器学习呢?相比感知器,我们最后的输出没有了sign左图为...

2018-05-26 12:14:35

阅读数 92

评论数 0

机器学习基石(林轩田)第八章 笔记与感悟总结

8.1 Noise and Error - Noise and Probabilistic Target任务:有噪音的情况下如何衡量我们错误上一节:如果我们的假设空间有有限的dvc ,很大的资料 又能找到g使Ein很小的话,那么我们大概就能学到东西。如果有noise怎么办呢?比如标签标错了,同时既...

2018-05-26 10:01:04

阅读数 62

评论数 0

机器学习基石(林轩田)第七章 笔记与感悟总结

7.1 The VC Dimension - Definition of VC Dimension我们上个周证明了Ein 约等于 Eout ,即测试的表现和训练的表现相似。在成长函数在某个地方有break point 和 N足够大的时候。意义在于之后介绍的VC维度。我们以后就不用B(N,k)这种麻...

2018-05-25 16:20:13

阅读数 120

评论数 1

机器学习基石(林轩田)第六章 笔记与感悟总结

6.1 Theory of Generalization - Restriction of Break Point机器学习领域机器是如何做到举一反三的本领的?   dichotomies 是二分类 ,即label只有(o,x)这种。例如positive rays,意思是一侧全是正,另一侧全是负,而...

2018-05-24 21:10:45

阅读数 279

评论数 0

机器学习基石(林轩田)第五章 笔记与感悟总结

5.1Training versus Testing - Recap and Preview训练和测试过程到底有什么不一样?机器学习是否可行,老师说的是:                1)资料从一个distribution中学习,如抽球问题                2)我们有  有限的  ...

2018-05-24 19:37:55

阅读数 125

评论数 0

机器学习基石(林轩田)第四章 笔记与感悟总结

4.1 Feasibility of Learning - Learning is Impossible 老师提出了一个难以学习的例子。我们无法知道未知的东西,但是我们想要推断未知的东西。4.2 Feasibility of Learning - Probability to the Rescue...

2018-05-23 20:43:14

阅读数 68

评论数 0

机器学习基石(林轩田)第三章 笔记与感悟总结

3.1Learnig with Different Output Space本节介绍了很多的机器学习问题。是非问题可以用PLA。其实就是二分类的问题(binary classification)。是非题应用十分广泛。从而引申到多类分类的问题。Multiclass Classification二分类...

2018-05-23 14:40:15

阅读数 160

评论数 0

机器学习基石(林轩田)第二章 笔记与感悟总结

2.1 Perceptron Hypothesis set问题:什么样的机器学习能解决是非问题?问题:我们的H 到底长什么样子?通过w来进行加权,然后看是否通过门槛值。红字h被称为'感知器'。perceptron打个比方:就是数学题,权值是每个题的分数。这样60分就是阈值。我们想要将thresho...

2018-05-23 12:28:05

阅读数 67

评论数 0

机器学习基石(林轩田)第一章 笔记与感悟总结

第一章 The Learning Problem 1.1  Course Indroduction 老师观点:从基础学起。不要成为机器学习的奴隶。1.2 What is Machine Learning  学习是从观察出发,视听嗅觉。观察——>学习——>...

2018-05-22 20:34:36

阅读数 73

评论数 0

大学四年历经四个专业 他是如何做到的?

    本来写来用来评选校级的优秀毕业生的,可惜最后落选,但既然写了文字,与其删掉不见天日,不如放到博客里,作为自己的回忆。-------------------------------------------------- ------------------------------------...

2018-05-05 19:55:38

阅读数 201

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭