显然的二分答案。
对于一个二分出的答案 m i d mid mid,我们要使分成的每一段中所有点离中心点的距离都小于等于 m i d mid mid,当然每一段的点是越多越好。
求一段点的最小圆覆盖,用随机增量法可以做到 O ( l e n ) O(len) O(len),不会的先去做最小圆覆盖。
所以难点就是怎么写 c h e c k check check函数。
以找第一个连续的最长段为例,当然可以一个一个枚举过去找到最远的右端点,但是发现如果第一段就是 [ 1 , n ] [1,n] [1,n]的段的话,这样做的复杂度就达到 O ( n 2 ) O(n^2) O(n2)。
考虑优化一下,对于一个左端点,可以二分一下右端点,这样看起来复杂度更优一点,但是考虑如果每一段长度都为 1 1 1,那么每次都要二分 l o g log log次,总的是 O ( n 2 l o g n ) O(n^2\ log\ n) O(n2 log n),显然也不行。
发现复杂度瓶颈在于每次二分得到的区间长是 O ( n ) O(n) O(n)级的,那么可不可以对于一个左端点,快速的找到右端点的范围呢?我们考虑倍增,设左端点为 l l l,我们倍增求出右端点的范围。设倍增得到最大的满足条件的区间长度为 2 k 2^k 2k,那么我们二分的左端点为 i + 2 k − 1 i+2^k-1 i+2k