题解 luoguP3517 【[POI2011]WYK-Plot】

博客介绍了如何解决luoguP3517题目,即[POI2011]WYK-Plot问题。通过二分法寻找最小的分割半径,利用随机增量法解决每段点的最小圆覆盖。难点在于设计高效的check函数,通过倍增技巧优化从左端点快速确定满足条件的右端点范围,降低时间复杂度到O(n log^2 n)。注意精度问题可能导致WA,可以尝试更换随机种子。
摘要由CSDN通过智能技术生成

传送门

显然的二分答案。

对于一个二分出的答案 m i d mid mid,我们要使分成的每一段中所有点离中心点的距离都小于等于 m i d mid mid,当然每一段的点是越多越好。

一段点的最小圆覆盖,用随机增量法可以做到 O ( l e n ) O(len) O(len),不会的先去做最小圆覆盖

所以难点就是怎么写 c h e c k check check函数。

以找第一个连续的最长段为例,当然可以一个一个枚举过去找到最远的右端点,但是发现如果第一段就是 [ 1 , n ] [1,n] [1,n]的段的话,这样做的复杂度就达到 O ( n 2 ) O(n^2) O(n2)

考虑优化一下,对于一个左端点,可以二分一下右端点,这样看起来复杂度更优一点,但是考虑如果每一段长度都为 1 1 1,那么每次都要二分 l o g log log次,总的是 O ( n 2   l o g   n ) O(n^2\ log\ n) O(n2 log n),显然也不行。

发现复杂度瓶颈在于每次二分得到的区间长是 O ( n ) O(n) O(n)级的,那么可不可以对于一个左端点,快速的找到右端点的范围呢?我们考虑倍增,设左端点为 l l l,我们倍增求出右端点的范围。设倍增得到最大的满足条件的区间长度为 2 k 2^k 2k,那么我们二分的左端点为 i + 2 k − 1 i+2^k-1 i+2k

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值