这是一道很简单的二维前缀和的大水题,由于范围比较小,完全可以直接三重循环搞定它。
不过鉴于本人认为洛谷被推到首页的代码有些难看,所以特意加了一个bool函数进行判断,算是一个小小的优化吧:
bool in_edge (int i, int j, int t) {//用bool函数进行判断,简洁明了
if (x[t] <= i + d && x[t] >= i - d) {
if (y[t] <= j + d && y[t] >= j - d) {
return 1;
}
}
return 0;
}
其实也可以只用一个if进行判断,但是为了让代码看上去不那么长,我就换两行写了QAQ
然后还有一点需要注意:
for (int i = 0; i <= 128; i++) {//从零开始, 从零开始,从零开始,重要的事情说三遍!!!
for (int j = 0; j <= 128; j++) {
for (int t = 1; t <= n; t++) {
if (in_edge (i, j, t)){
f[i][j] += k[t];
}
}
if (maxn < f[i][j]) {
tim = 1;
maxn = f[i][j];