- 博客(3)
- 收藏
- 关注
原创 Datawhale X 李宏毅苹果书 AI夏令营-- 学习笔记task3
在这种情况下,即使经过优化,模型的表现也无法令人满意。应对模型偏差的主要方法是增加模型的复杂性,例如引入更多的特征或使用更深的模型。通过将训练数据分成多个子集,交替使用这些子集进行训练和验证,可以更全面地评估模型的表现,避免模型在测试集上表现不。为了解决这一问题,可以尝试使用更浅的模型,或采用其他优化技术,如调整学习率或使用更高级的优化算法。在这一章节中,讨论了在机器学习实践中常见的问题及其解决方法,内容涵盖了。,如减少模型的参数数量或使用正则化技术,从而防止模型过度拟合训练数据。
2024-09-02 00:47:53 323
原创 Datawhale X 李宏毅苹果书 AI夏令营-- 学习笔记task 2
章节开始介绍了线性模型的应用,通过简单的函数形式y=b+wx来预测数据,比如预测视频的观看次数。尽管在训练数据上,调整后的模型可以达到较低的误差,但当模型应用到新的数据时,误差往往会增加。为了提高模型的预测能力,可以通过增加更多的输入特征,如考虑前几天的数据,而不仅仅是前一天的数据。接着,书中讲述了损失函数的重要性。梯度下降法通过计算损失函数相对于模型参数的导数,来指导参数的调整方向,逐步减少预测误差。通过合理的模型设计和参数调整,即使是简单的线性模型也可以在一定程度上达到令人满意的预测效果。
2024-08-29 21:54:28 324
原创 Datawhale X 李宏毅苹果书 AI夏令营-- 学习笔记task 1
无监督学习则是处理无标注的数据,挖掘数据中的隐藏模式。最后,通过测试数据对模型进行评估,确保其具有良好的准确性和泛化能力,模型最终会被部署到实际应用场景中,用于提供预测服务。比如,使用机器学习进行图片分类时,常常通过监督学习来训练模型,使其能够识别并区分不同类别的图像。数据量和数据质量是影响模型表现的重要因素,尤其是当数据中存在噪声或者偏差时,会导致模型性能下降。过拟合和欠拟合问题也是模型开发中的常见难题,过拟合意味着模型在训练数据上表现出色但无法泛化到新数据,而欠拟合则是模型无法捕捉到数据的规律。
2024-08-25 23:25:01 260
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人