//ELFhash函数
unsigned
int
ELFHash(
char
*
str) {
unsigned
int
hash
=
0
; unsigned
int
x
=
0
;
while
(
*
str) { hash
=
(hash
<
<
4
)
+
(
*
str
++
);
//
hash值左移4位加上一个字符
if
((x
=
hash
&
0xF0000000L
)
!=
0
)
//
判断hash值的高4位是否不为0,因为不为0时需要下面特殊处理,否则上面一步的左移4位会把这高四位给移走,造成信息丢失
{
hash
^=
(x
>>
24
);
//
把刚才的高4位跟hash的低5-8位异或
hash
&=
~
x;
//
把高4位清0
}
}
return
(hash
&
0x7FFFFFFF
);
//
希望hash值是一个非负数
}
附测试:
经典字符串Hash函数测试 |
01-8-22 上午 11:50:37
|
链表查找的时间效率为O(N),二分法为log2N,B+ Tree为log2N,但Hash链表查找的时间效率为O(1)。 |
设计高效算法往往需要使用Hash链表,常数级的查找速度是任何别的算法无法比拟的,Hash链表的构造和冲突的不同实现方法对效率当然有一定的影响,然而 Hash函数是Hash链表最核心的部分,本文尝试分析一些经典软件中使用到的字符串Hash函数在执行效率、离散性、空间利用率等方面的性能问题。 |
作者阅读过大量经典软件原代码,下面分别介绍几个经典软件中出现的字符串Hash函数。 |
static unsigned long hashpjw(char *arKey, unsigned int nKeyLength) |
char *arEnd=arKey+nKeyLength; |
if ((g = (h & 0xF0000000))) { |
unsigned long lh_strhash(char *str) |
if (str == NULL) return(0); |
/* The following hash seems to work very well on normal text strings |
* no collisions on /usr/dict/words and it distributes on %2^n quite |
* well, not as good as MD5, but still good. |
unsigned long lh_strhash(const char *c) |
if ((c == NULL) || (*c == '/0')) |
return(b[0]|(b[1]<<8)|(b[2]<<16)|(b[3]<<24)); |
在下面的测量过程中我们分别将上面的两个函数标记为OpenSSL_Hash1和OpenSSL_Hash2,至于上面的实现中使用MD5算法的实现函数我们不作测试。 |
#ifndef NEW_HASH_FUNCTION |
/* Calc hashvalue for a key */ |
static uint calc_hashnr(const byte *key,uint length) |
register uint nr=1, nr2=4; |
nr^= (((nr & 63)+nr2)*((uint) (uchar) *key++))+ (nr << 8); |
/* Calc hashvalue for a key, case indepenently */ |
static uint calc_hashnr_caseup(const byte *key,uint length) |
register uint nr=1, nr2=4; |
nr^= (((nr & 63)+nr2)*((uint) (uchar) toupper(*key++)))+ (nr << 8); |
* The basis of the hash algorithm was taken from an idea sent by email to the |
* IEEE Posix P1003.2 mailing list from Phong Vo (kpv@research.att.com) and |
* Glenn Fowler (gsf@research.att.com). Landon Curt Noll (chongo@toad.com) |
* later improved on their algorithm. |
* The magic is in the interesting relationship between the special prime |
* 16777619 (2^24 + 403) and 2^32 and 2^8. |
* This hash produces the fewest collisions of any function that we've seen so |
* far, and works well on both numbers and strings. |
uint calc_hashnr(const byte *key, uint len) |
for (hash = 0; key < end; key++) |
hash ^= (uint) *(uchar*) key; |
uint calc_hashnr_caseup(const byte *key, uint len) |
for (hash = 0; key < end; key++) |
hash ^= (uint) (uchar) toupper(*key); |
Mysql中对字符串Hash函数还区分了大小写,我们的测试中使用不区分大小写的字符串Hash函数,另外我们将上面的两个函数分别记为MYSQL_Hash1和MYSQL_Hash2。 |
unsigned int hash(char *str) |
register unsigned char *p; |
for(h=0, p = (unsigned char *)str; *p ; p++) |
从上面给出的经典字符串Hash函数中可以看出,有的涉及到字符串大小敏感问题,我们的测试中只考虑字符串大小写敏感的函数,另外在上面的函数中有的函数需要长度参数,有的不需要长度参数,这对函数本身的效率有一定的影响,我们的测试中将对函数稍微作一点修改,全部使用长度参数,并将函数内部出现的计算长度代码删除。 |
我们用来作测试用的Hash链表采用经典的拉链法解决冲突,另外我们采用静态分配桶(Hash链表长度)的方法来构造Hash链表,这主要是为了简化我们的实现,并不影响我们的测试结果。 |
测试文本采用单词表,测试过程中从一个输入文件中读取全部不重复单词构造一个Hash表,测试内容分别是函数总调用次数、函数总调用时间、最大拉链长度、平均拉链长度、桶利用率(使用过的桶所占的比率),其中函数总调用次数是指Hash函数被调用的总次数,为了测试出函数执行时间,该值在测试过程中作了一定的放大,函数总调用时间是指Hash函数总的执行时间,最大拉链长度是指使用拉链法构造链表过程中出现的最大拉链长度,平均拉链长度指拉链的平均长度。 |
PIII600笔记本,128M内存,windows 2000 server操作系统。 |
以下分别是对两个不同文本文件中的全部不重复单词构造Hash链表的测试结果,测试结果中函数调用次数放大了100倍,相应的函数调用时间也放大了100倍。 |
从上表可以看出,这些经典软件虽然构造字符串Hash函数的方法不同,但是它们的效率都是不错的,相互之间差距很小,读者可以参考实际情况从其中借鉴使用。