DataV

DataV是阿里云提供的数据可视化在线工具,非专业人员也能快速传达数据价值。它有丰富图表库、支持多数据源与数据交互分析等特征。制作需搜索信息点、了解物理屏等,设计要遵循大小适配、主次分明,宏微兼顾、动静结合原则。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

DataV

简介

DataV是一款阿里云提供的数据可视化在线工具。通过拖拽式的操作,使用数据连接、可视化组件库、行业设计模板库、多终端适配与发布运维于等功能,让非专业人员也可以快速的将数据的价值通过视觉进行传达

特征

(1)DataV具有丰富的图表库:能够绘制包括海量数据的地理轨迹、地理飞线、热力分布、地域区块、3D地图、3D地球,地理数据的多层叠加,还接入了ECharts,AntV-G2等第三方开源图标库

(2)DataV支持多种数据源:能够接入包括阿里云分析型数据库(AnalyticDB,原ADS)、RDS for MySQL、本地CSV上传和在线API的接入,且支持动态请求。可实现各类大数据实时计算、监控的需求,充分发挥大数据计算的能力

RDS for MySQL、ADS、MySQL、CSV文件、API和静态JSON等常规数据源(所有版本可用

RDS for SQLserver、RDS for PastgreSQL、Oracle、HybridDB for PostgreSQL、阿里云API网关、Table Store、DataV数据代理服务和业务实时监控服务(企业版及以上用户可用

(3)DataV支持数据交互分析:能够图形化地配置图表之间的交互联动,通过图表之间的参数传递实现数据的交互分析

(4)DataV支持多种适配与发布方式:针对拼接大屏端的展示做了分辨率优化,能够适配非常规拼接分辨率做适配优化。创建的可视化应用能够发布分享,没有购买DataV产品的用户也可以访问到应用,企业版可设置访问密码进行访问权限控制

(5)DataV可以本地化运行部署、大屏拼接中控系统和支持二次开发

制作流程

  • 搜索信息点:了解需求的目的,以及想要突出展示的内容
  • 了解物理屏:了解大屏的类型、分辨率、尺寸、比例、环境等
  • 处理信息点:整理信息板块、包括核心、重要、详细等部分
  • 信息点可视化:指标类信息点和地理类信息点,选择合适方式
  • 数据预研:了解数据信息,规模、特征、联系等
  • 绘制原型稿:确定逻辑,选定布局方式,组织可视化组件
  • 绘制视觉稿:使用DataV完成设计

设计原则

一、大小适配、主次分明

(1)突出层次结构

每个大业务块对应到小业务块时,用3-6个小标题来表示

越优先的越放在中间+上方,优先级越低的放在两侧和下方

(2)合理拆解板块

先从工作总结报告入手,分出几大业务块,业务块数量能和拼接屏块数与播放模式相适配

按照拆分好的板块组织信息点

二、宏微兼顾、动静结合

KPI设置

KPI都要有细节来解释

03-13
### 阿里云 DataV 数据可视化工具的使用教程和案例 #### 工具概述 阿里云 DataV 是一款专注于数据可视化的强大工具,它不仅提供了丰富的模板和组件,还支持多种数据源接入方式。无论是企业还是个人开发者,都可以借助该工具快速构建专业的数据可视化应用[^1]。 #### 功能特点 DataV 支持多样的数据源接入形式,包括但不限于阿里云分析型数据库、关系型数据库以及本地文件(如 CSV)。此外,它还可以通过在线 API 实现动态请求,从而满足各种复杂场景下的需求[^3]。更重要的是,这款工具的设计理念使得即使是非技术背景的人士也可以轻松上手并完成高质量的数据展示工作[^4]。 #### 使用教程概览 以下是有关如何有效使用阿里云 DataV 进行项目开发的一些指导原则: 1. **创建新项目** 登录到阿里云控制台后,进入 DataV 页面即可新建一个空白画布来启动您的第一个作品。 2. **配置数据源** 根据实际业务情况选择合适的数据连接器类型,并按照提示填写必要的参数信息以便成功拉取目标数据集。 3. **设计布局与样式调整** 利用内置的各种图表控件拖拽至编辑区域形成初步构架;随后针对每一个单独元素进一步细化属性设置直至达到理想视觉效果为止。 4. **发布分享成果** 完成全部制作流程之后可以选择导出图片或者嵌入网页链接等形式对外公开传播所创作的内容。 下面是一段简单的 Python 脚本用于模拟生成符合特定格式要求供后续导入使用的 JSON 结构化数据样本: ```python import json data_points = [ {"name": "Point A", "value": 10}, {"name": "Point B", "value": 20} ] json_data = { "points": data_points, } with open('sample.json', 'w') as f: json.dump(json_data, f) ``` 此脚本能帮助理解如何准备适配于某些预定义接口规范之下的输入资料结构[^5]。 #### 应用实例说明 假设某电商公司希望在其运营中心的大屏幕上显示全国范围内各城市订单量分布状况,则可采用如下方案实施部署: - 将后台统计得出的城市级汇总数值转化为上述提到的标准JSON对象; - 借助 RESTful 接口推送更新后的记录集合给前端渲染引擎处理; - 在最终呈现界面上利用气泡大小代表不同地区的交易活跃度差异程度。 以上过程充分体现了 DataV 对接外部系统的灵活性及其直观表达抽象概念的强大能力。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值