🌟从零吃透线性方程组:理论+实战,程序员必看!🌟
💡 引言
“为什么程序员要学线性方程组?”
线性方程组是计算机图形学、机器学习、游戏物理引擎的底层数学基石!
👉 举个栗子:游戏中人物运动的轨迹预测、图像处理中的像素修复、神经网络参数优化……背后都藏着线性方程组的魔法!
这篇文章带你从理论到实战,彻底打通任督二脉! 🚀
🧐 一、线性方程组?
你去商店买苹果和香蕉,苹果每个 x x x元,香蕉每根 y y y元,你买了 3 3 3个苹果和 2 2 2根香蕉,一共花了 10 10 10元,这就能写成一个方程: 3 x + 2 y = 10 3x + 2y = 10 3x+2y=10 。像这样,方程里的未知数 x x x和 y y y都是一次的(没有平方、立方或者更复杂的形式),就是线性方程
。
要是有好几个这样的线性方程放在一起,就组成了线性方程组
。比如再加上一个条件,你第二次去买,买了 2 2 2个苹果和 4 4 4根香蕉,花了 12 12 12元,写成方程是 2 x + 4 y = 12 2x + 4y = 12 2x+4y=12 。这两个方程 { 3 x + 2 y = 10 2 x + 4 y = 12 \begin{cases}3x + 2y = 10 \\ 2x + 4y = 12\end{cases} {
3x+2y=102x+4y=12 就构成了一个线性方程组。
我们学习线性方程组,主要目的是找到一组 x x x和 y y y的值,能同时满足方程组里的每一个方程。就像刚刚这个例子,通过一定的方法可以算出 x = 2 x = 2 x=2, y = 2 y = 2 y=2 ,把 x = 2 x = 2 x=2, y = 2 y = 2 y=2代入这两个方程,等式都成立,这组值就是这个线性方程组的解。
求解线性方程组有几种常见方法:
- 代入消元法:从一个方程里把一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个线性方程组的解。比如从第一个方程 3 x +