import numpy as np
import pandas as pd
# 生成DataFrame的函数defmake_df(col,ind):
data ={c:[str(c)+str(i)for i in ind]for c in col}return pd.DataFrame(data, ind)# pd.concat()合并时,此方法不会处理索引相同的情况,直接合并为新的索引。#索引相同处理方法
x = make_df('ab',[0,1])
y = make_df('ab',[3,4])try:
pd.concat([x,y],verify_integrity=True)# 设置verify_integrity参数,若有重复索引,抛出异常except ValueError as e:print('ValueError:',e)# 根据列名,添加行
pd.concat([x,y],ignore_index=True)# 设置ignore_index参数,可以忽略索引,将两个数据直接拼接到一起,并创建新的索引
pd.concat([x,y],keys=['x','y'])# 设置keys参数,可以将两个数据的索引设置成多级索引
df5 = make_df('asd',[1,2])
df6 = make_df('sdf',[3,4])
pd.concat([df5,df6],join='inner')# 忽略缺失值的列# df1.append(df2) 和 pd.concat([df1,df2]) 相同