详细讲解RocketMQ!包含多个知识点!通俗易懂!(顺序、延时消息、死信队列、消费幂、消息过滤)

RocketMQ提供了全局和部分顺序消息,保证消息严格按顺序发布和消费。延时消息可用于超时场景,如未支付订单处理。死信队列处理无法正常消费的消息,而消费幂等则防止重复消费导致异常。RocketMQ还支持服务端的消息过滤,包括Tag和SQL92表达式过滤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、顺序消息

顺序消息(FIFO 消息)是消息队列 RocketMQ 提供的一种严格按照顺序来发布和消费的消息。顺序发布和顺序消费是指对于指定的一个 Topic,生 产者按照一定的先后顺序发布消息;消费者按照既定的先后顺序订阅消息,即先发布的消息一定会先被客户端接收到。

顺序消息分为全局顺序消息和分区顺序消息。

1.1、全局顺序消息

RocketMQ 在默认情况下不保证顺序,要保证全局顺序,需要把 Topic 的读写队列数设置为 1,然后生产者和消费者的并发设置也是 1。所以这样的话 高并发,高吞吐量的功能完全用不上。
在这里插入图片描述

1.1.1、适用场景

适用于性能要求不高,所有的消息严格按照 FIFO 原则来发布和消费的场景。

1.1.2、示例

要确保全局顺序消息,需要先把 Topic 的读写队列数设置为 1,然后生产者和消费者的并发设置也是 1。
mqadmin update Topic -t AllOrder -c DefaultCluster -r 1 -w 1 -n 127.0.0.1:9876
在证券处理中,以人民币兑换美元为 Topic,在价格相同的情况下,先出价者优先处理,则可以按照 FIFO 的方式发布和消费全局顺序消息。

1.2、部分顺序消息

对于指定的一个 Topic,所有消息根据 Sharding Key 进行区块分区。同一个分区内的消息按照严格的 FIFO 顺序进行发布和消费。Sharding Key 是顺 序消息中用来区分不同分区的关键字段,和普通消息的 Key 是完全不同的概念。

二、延时消息

2.1、概念介绍

延时消息:Producer 将消息发送到消息队列 RocketMQ 服务端,但并不期望这条消息立马投递,而是延迟一定时间后才投递到 Consumer 进行消费, 该消息即延时消息。

2.2、适用场景

消息生产和消费有时间窗口要求:比如在电商交易中超时未支付关闭订单的场景,在订单创建时会发送一条延时消息。这条消息将会在 30 分钟以 后投递给消费者,消费者收到此消息后需要判断对应的订单是否已完成支付。 如支付未完成,则关闭订单。如已完成支付则忽略。

2.3、使用方式

Apache RocketMQ 目前只支持固定精度的定时消息,因为如果要支持任意的时间精度,在 Broker 层面,必须要做消息排序,如果再涉及到持久化, 那么消息排序要不可避免的产生巨大性能开销。(阿里云 RocketMQ 提供了任意时刻的定时消息功能,Apache 的 RocketMQ 并没有,阿里并没有开源)
发送延时消息时需要设定一个延时时间长度,消息将从当前发送时间点开始延迟固定时间之后才开始投递。
延迟消息是根据延迟队列的 level 来的,延迟队列默认是
** msg.setDelayTimeLevel(5)代表延迟一分钟
** "1s 5s 10s 30s 1m 2m 3m 4m 5m 6m 7m 8m 9m 10m

<think>好的,用户希望获得关于CNN中卷积层、池化层和全连接层作用的通俗易懂详细讲解。首先,我需要回顾之前的对话和提供的引用内容,确保回答准确且符合用户需求。 用户之前已经得到了较为技术性的解释,现在需要更通俗的版本。可能需要用类比或日常例子来帮助理解。比如,把卷积层比作放大镜找细节,池化层类似压缩图片,全连接层像总结报告。 检查引用内容,特别是引用[1]和[2],确认全连接层作为分类器的作用,以及卷积层和池化层的功能。需要确保解释与这些引用一致,同时避免使用过多术语。 用户提到“通俗易懂”,所以需要简化数学公式或避免复杂的公式。比如,之前的回答中有公式,但用户现在可能需要更少的数学,更多的比喻。 另外,用户可能对CNN的工作流程感兴趣,所以用步骤化的例子来说明各层如何协作,比如从输入图片到最终分类的过程。 需要确认是否覆盖了各层的作用、为什么重要、如何协作,以及可能的常见问题,比如参数共享、平移不变性等,但用简单的话解释。 还要注意用户可能存在的误解,比如全连接层为何参数多,是否有替代方法,如全局平均池化,但引用[1]提到可以用卷积操作实现,这点可能需要提及但不过于深入。 最后,确保回答结构清晰,分点讲解,每个层的作用、通俗解释、实际例子,以及协作流程。可能还需要总结和问题部分,但根据用户要求,问题已经在前面的回答中生成了,所以这里可能不需要。 总之,需要将技术内容转化为日常语言,使用比喻和例子,确保每个层的功能明确,并说明它们如何共同工作,帮助用户直观理解CNN的工作原理。</think>### 通俗版讲解:CNN三大核心层的作用 (用日常场景比喻+关键原理说明,保证零基础也能理解) --- #### **1. 卷积层——「细节放大镜」** **作用一句话**:像用放大镜扫描图片,专门找小图案(比如线条、斑点、颜色变化)。 **通俗解释**: - **举个栗子**:假设你要找一张猫图里的“猫耳朵”,不需要看整张图,只需要用小窗口(比如3×3像素)在图上滑动,每次检查这个小窗口里有没有尖尖的形状——这就是卷积核在检测特征。 - **关键设计**: - **局部观察**:每个卷积核只关注图片的一小块区域(局部感受野),避免一次性处理全图信息[^2]。 - **共享参数**:同一个“放大镜”(卷积核)扫过全图,比如检测“竖线”的核无论扫到左上角还是右下角,都用同一组参数,减少计算量[^2]。 - **多层叠加**:第一层找简单线条,第二层把线条组合成耳朵形状,第三层再拼成整只猫头——类似乐高积木层层组装[^3]。 --- #### **2. 池化层——「智能压缩器」** **作用一句话**:把图片信息压缩,只保留关键特征,同时让模型不纠结于细节位置。 **通俗解释**: - **举个栗子**:假设你拍了一张猫的照片,稍微向左平移了一点,池化层会让电脑认为这两张图都是“猫”,而不因为耳朵位置偏移就认不出来。 - **关键设计**: - **降维防过拟合**:比如用“最大池化”在2×2区域内只保留最明显的数值,相当于把图片分辨率降低(类似手机截图缩小),减少计算负担[^2]。 - **平移不变性**:无论猫耳朵在图片左侧还是右侧,池化后特征仍能被识别,增强模型鲁棒性[^3]。 - **常用操作**: - **最大池化**:取区域最大值(保留最显著特征,如“这里有个明显的边缘”) - **平均池化**:取区域平均值(柔和处理,适合平滑背景) --- #### **3. 全连接层——「终极裁判员」** **作用一句话**:把前面找到的所有特征汇总,判断到底属于哪一类(比如“猫”还是“狗”)。 **通俗解释**: - **举个栗子**:假设卷积层发现了“尖耳朵”“胡须”“圆眼睛”,池化层确认这些特征的位置不重要,全连接层就会像老师改卷一样,根据这些特征打分数:猫90分,狗10分,输出最终答案。 - **关键设计**: - **特征整合**:将多维特征图“拍扁”成一维向量(比如把20×20的图变成400个数字),方便计算[^1]。 - **分类决策**:通过权重计算(类似$\text{猫得分} = 0.8\times\text{耳朵特征} + 0.6\times\text{胡须特征} + ...$)输出概率,常用softmax函数归一化为概率分布[^2]。 - **参数问题**:传统全连接层参数极多(比如1000个神经元连接前一层的10万参数),因此现代网络常用全局平均池化(GAP)替代——直接对每个特征图取平均值,大幅减少参数[^1]。 --- ### **三兄弟协作流程图(以猫狗分类为例)** 1. **输入图片** → 2. **卷积层1**:发现边缘、色块 → 3. **池化层1**:压缩图片,忽略边缘位置变化 → 4. **卷积层2**:组合边缘成耳朵、眼睛等部件 → 5. **池化层2**:再次压缩,确认部件存在即可 → 6. **全连接层**:综合所有部件特征,判断“猫”概率70%,“狗”概率30% → 7. **输出结果**:喵星人! --- ### **你可能还想问** 1. **为什么不用全连接层直接处理图片?** → 一张1000×1000的图片,全连接层需要10^6×10^3=10^9个参数,而卷积层用10个3×3核只需90个参数,效率天壤之别[^2]。 2. **池化层会丢失重要信息吗?** → 会,但这是有意为之!就像人看模糊的马赛克图也能认出物体,关键特征保留即可,噪声过滤反而提升泛化能力[^3]。 3. **全连接层必须放在最后吗?** → 不一定!有些网络(如GoogleNet)中间也插入全连接层辅助训练,但最终分类仍需汇总层[^1]。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值