本次mysql系列不会讲解具体的查询语句,而是放在mysql的一些性能优化和一些特性上,是学习笔记,供大家参考补充。
慢查询
MySQL的慢查询,全名是慢查询日志,是MySQL提供的一种日志记录,用来记录在MySQL中响应时间超过阀值的语句。具体环境中,运行时间超过long_query_time值的SQL语句,则会被记录到慢查询日志中。long_query_time的默认值为10,意思是记录运行10秒以上的语句。默认情况下,MySQL数据库并不启动慢查询日志,需要手动来设置这个参数。当然,如果不是调优需要的话,一般不建议启动该参数,因为开启慢查询日志会或多或少带来一定的性能影响。
慢查询日志支持将日志记录写入文件和数据库表。
定位慢查询
开源的运维工具Prometheus 、Skywalking和mysql的日志:linux下的mysql系统配置文件: /var/lib/mysql/localhost-slow.log。
导致慢查询的原因
聚合查询,多表查询,表大数据量查询,深度分页查询等。
如何分析
explain select col from table where condition
可以采用MySQL自带的分析工具 EXPLAIN 通过key和key_len检查是否命中了索引(索引本身存在是否有失效的情况)
通过type字段查看sql是否有进一步的优化空间,是否存在全索引扫描或全盘扫描
通过extra建议判断,是否出现了回表的情况,如果出现了,可以尝试添加索引或修改返回字段来修复
存储引擎
定义
存储引擎就是存储数据、建立索引、更新/查询数据等技术的实现方式 。存储引擎是基于表的,而不是基于库的,所以存储引擎也可被称为表类型。
分类
常见的有myisam,innodb,memory等
只有innodb支持事务安全,其他的都不支持。
mysql体系结构
innodb
InnoDB是一种兼顾高可靠性和高性能的通用存储引擎,在 MySQL 5.5 之后,InnoDB是默认的 MySQL 存储引擎。
支持外键,行级锁,提高并发性能。遵行dml操作的acid原则,支持事务。
InnoDB存储引擎是mysql5.5之后是默认的引擎,它支持事务、外键、表级锁和行级锁。使用B+Tree作为索引结构,数据文件是和(主键)索引绑在一起的;
MyISAM是早期的引擎,它不支持事务、只有表级锁、也没有外键,用的不多。MyISAM是非聚集索引
,它也是使用B+Tree作为索引结构,但是索引和数据文件是分离的,索引保存的是数据文件的指针。
Memory主要把数据存储在内存,支持表级锁,没有外键和事务,用的也不多
索引
索引(index)是帮助MySQL高效获取数据的数据结构(有序)。在数据之外,数据库系统还维护着满足特定查找算法的数据结构(B+树),这些数据结构以某种方式引用(指向)数据, 这样就可以在这些数据结构上实现高级查找算法,这种数据结构就是索引。
索引作用
索引能够提高数据检索的效率,降低数据库的IO成本(不需要全表扫描) 通过索引列对数据进行排序,降低数据排序的成本,降低了CPU的消耗。
B树B+树
B+Tree是在BTree基础上的一种优化,使其更适合实现外存储索引结构,InnoDB存储引擎就是用B+Tree实现其索引结构
B树与B+树对比: ①:磁盘读写代价B+树更低;②:查询效率B+树更加稳定;③:B+树便于扫库和区间查询。
聚簇索引和非聚簇索引
聚簇索引
将数据存储与索引放到了一块,索引结构的叶子节点保存了行数据,必须有且只有一个。
选举规则:
如果存在主键,主键索引就是聚集索引。
如果不存在主键,将使用第一个唯一(UNIQUE)索引作为聚集索引。
如果表没有主键,或没有合适的唯一索引,则InnoDB会自动生成一个rowid作为隐藏的聚集索引。
非聚簇索引(二级索引)
将数据与索引分开存储,索引结构的叶子节点关联的是对应的主键。可以有多个。
节点上面带数据。
回表
通过二级索引找到对应的主键值,到聚集索引中查找整行数据,这个过程就是回表
覆盖索引
覆盖索引是指 查询使用了索引,并且需要返回的列,在该索引中已经全部能够找到。
如果返回的列中没有涵盖已有的索引,有可能会触发回表查询,尽量避免使用select *
mysql超大分页处理
可以使用覆盖索引解决。
在数据量比较大时,如果进行limit分页查询,在查询时,越往后,分页查询效率越低。
优化思路: 一般分页查询时,通过创建 覆盖索引 能够比较好地提高性能,可以通过覆盖索引加子查询形式进行优化。
select * from tb_sku t, (select id from tb_sku order by id limit 10000000,10) a where t.id = a.id;
覆盖索引+子查询解决。
索引创建的原则
1). 针对于数据量较大,且查询比较频繁的表建立索引。 10w+
2). 针对于常作为查询条件(where)、排序(order by)、分组(group by)操作的字段建立索引。
3). 尽量选择区分度高的列作为索引,尽量建立唯一索引,区分度越高,使用索引的效率越高。
4). 如果是字符串类型的字段,字段的长度较长,可以针对于字段的特点,建立前缀索引。
5). 尽量使用联合索引,减少单列索引,查询时,联合索引很多时候可以覆盖索引,节省存储空间,避免回表,提高查询效率。
6). 要控制索引的数量,索引并不是多多益善,索引越多,维护索引结构的代价也就越大,会影响增删改的效率。
7). 如果索引列不能存储NULL值,请在创建表时使用NOT NULL约束它。当优化器知道每列是否包含NULL值时,它可以更好地确定哪个索引最有效地用于查询。