Mysql学习笔记系列(一)

        本次mysql系列不会讲解具体的查询语句,而是放在mysql的一些性能优化和一些特性上,是学习笔记,供大家参考补充。

慢查询

        MySQL的慢查询,全名是慢查询日志,是MySQL提供的一种日志记录,用来记录在MySQL中响应时间超过阀值的语句。具体环境中,运行时间超过long_query_time值的SQL语句,则会被记录到慢查询日志中。long_query_time的默认值为10,意思是记录运行10秒以上的语句。默认情况下,MySQL数据库并不启动慢查询日志,需要手动来设置这个参数。当然,如果不是调优需要的话,一般不建议启动该参数,因为开启慢查询日志会或多或少带来一定的性能影响。
慢查询日志支持将日志记录写入文件和数据库表。   

定位慢查询

开源的运维工具Prometheus 、Skywalking和mysql的日志:linux下的mysql系统配置文件: /var/lib/mysql/localhost-slow.log。

导致慢查询的原因

聚合查询,多表查询,表大数据量查询,深度分页查询等。

如何分析

explain select col from table where condition

可以采用MySQL自带的分析工具 EXPLAIN 通过key和key_len检查是否命中了索引(索引本身存在是否有失效的情况)

通过type字段查看sql是否有进一步的优化空间,是否存在全索引扫描或全盘扫描

通过extra建议判断,是否出现了回表的情况,如果出现了,可以尝试添加索引或修改返回字段来修复

存储引擎

定义

        存储引擎就是存储数据、建立索引、更新/查询数据等技术的实现方式 。存储引擎是基于表的,而不是基于库的,所以存储引擎也可被称为表类型。

分类

常见的有myisam,innodb,memory等

只有innodb支持事务安全,其他的都不支持。

mysql体系结构

innodb

InnoDB是一种兼顾高可靠性和高性能的通用存储引擎,在 MySQL 5.5 之后,InnoDB是默认的 MySQL 存储引擎。

支持外键,行级锁,提高并发性能。遵行dml操作的acid原则,支持事务。

InnoDB存储引擎是mysql5.5之后是默认的引擎,它支持事务、外键、表级锁和行级锁。使用B+Tree作为索引结构,数据文件是和(主键)索引绑在一起的;

MyISAM是早期的引擎,它不支持事务、只有表级锁、也没有外键,用的不多。MyISAM是非聚集索引,它也是使用B+Tree作为索引结构,但是索引和数据文件是分离的,索引保存的是数据文件的指针

Memory主要把数据存储在内存,支持表级锁,没有外键和事务,用的也不多

索引

        索引(index)是帮助MySQL高效获取数据的数据结构(有序)。在数据之外,数据库系统还维护着满足特定查找算法的数据结构(B+树),这些数据结构以某种方式引用(指向)数据, 这样就可以在这些数据结构上实现高级查找算法,这种数据结构就是索引。

索引作用

         索引能够提高数据检索的效率,降低数据库的IO成本(不需要全表扫描) 通过索引列对数据进行排序,降低数据排序的成本,降低了CPU的消耗。

B树B+树

        B+Tree是在BTree基础上的一种优化,使其更适合实现外存储索引结构,InnoDB存储引擎就是用B+Tree实现其索引结构

        B树与B+树对比: ①:磁盘读写代价B+树更低;②:查询效率B+树更加稳定;③:B+树便于扫库和区间查询。

聚簇索引和非聚簇索引

聚簇索引

将数据存储与索引放到了一块,索引结构的叶子节点保存了行数据,必须有且只有一个。

选举规则:

如果存在主键,主键索引就是聚集索引。

如果不存在主键,将使用第一个唯一(UNIQUE)索引作为聚集索引。

如果表没有主键,或没有合适的唯一索引,则InnoDB会自动生成一个rowid作为隐藏的聚集索引。

非聚簇索引(二级索引)

将数据与索引分开存储,索引结构的叶子节点关联的是对应的主键。可以有多个。

节点上面带数据。

回表

通过二级索引找到对应的主键值,到聚集索引中查找整行数据,这个过程就是回表

覆盖索引

覆盖索引是指 查询使用了索引,并且需要返回的列,在该索引中已经全部能够找到。

如果返回的列中没有涵盖已有的索引,有可能会触发回表查询,尽量避免使用select *

mysql超大分页处理

可以使用覆盖索引解决。

在数据量比较大时,如果进行limit分页查询,在查询时,越往后,分页查询效率越低。

优化思路: 一般分页查询时,通过创建 覆盖索引 能够比较好地提高性能,可以通过覆盖索引加子查询形式进行优化。

select * from tb_sku t,     (select id from tb_sku order by id limit 10000000,10) a where t.id = a.id;

覆盖索引+子查询解决。

索引创建的原则

1). 针对于数据量较大,且查询比较频繁的表建立索引。 10w+

2). 针对于常作为查询条件(where)、排序(order by)、分组(group by)操作的字段建立索引。

3). 尽量选择区分度高的列作为索引,尽量建立唯一索引,区分度越高,使用索引的效率越高。

4). 如果是字符串类型的字段,字段的长度较长,可以针对于字段的特点,建立前缀索引。

5). 尽量使用联合索引,减少单列索引,查询时,联合索引很多时候可以覆盖索引,节省存储空间,避免回表,提高查询效率。

6). 要控制索引的数量,索引并不是多多益善,索引越多,维护索引结构的代价也就越大,会影响增删改的效率。

7). 如果索引列不能存储NULL值,请在创建表时使用NOT NULL约束它。当优化器知道每列是否包含NULL值时,它可以更好地确定哪个索引最有效地用于查询。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值