前段时间我们的服务遇到了性能瓶颈,由于前期需求太急没有注意这方面的优化,到了要还技术债的时候就非常痛苦了。
在很低的 QPS 压力下服务器 load 就能达到 10-20,CPU 使用率 60% 以上,而且在每次流量峰值时接口都会大量报错,虽然使用了服务熔断框架 Hystrix,但熔断后服务却迟迟不能恢复。每次变更上线更是提心吊胆,担心会成为压死骆驼的最后一根稻草,导致服务雪崩。
在需求终于缓下来后,leader 给我们定下目标,让我们在两周内把服务性能问题彻底解决。近两周的排查和梳理中,发现并解决了多个性能瓶颈,修改了系统熔断方案,最终实现了服务能处理的 QPS 翻倍,能实现在极高 QPS(3-4倍)压力下服务正常熔断,且能在压力降低后迅速恢复正常,以下是部分问题的排查和解决过程。
服务器高CPU、高负载
首先要解决的问题就是服务导致服务器整体负载高、CPU 高的问题。
我们的服务整体可以归纳为从某个存储或远程调用获取到一批数据,然后就对这批数据进行各种花式变换,最后返回。由于数据变换的流程长、操作多,系统 CPU 高一些会正常,但平常情况下就 CPU us 50% 以上,还是有些夸张了。
我们都知道,可以使用 top 命令在服务器上查询系统内各个进程的 CPU 和内存占用情况。可是 JVM 是 Java 应用的领地,想查看 JVM 里各个线程的资源占用情况该用什么工具呢?
jmc 是可以的,但使用它比较麻烦,要进行一系列设置。我们还有另一种选择,就是使用 jtop,jtop 只是一个 jar 包,它的项目地址在 yujikiriki/jtop, 我们可以很方便地把它复制到服务器上,获取到 java 应用的 pid 后,使用 java -jar jtop.jar [options] <pid> 即可输出 JVM 内部统计信息。
jtop 会使用默认参数 -stack n打印出最好 CPU 的 5 种线程栈。
形如:
Heap Memory: INIT=134217728 USED=230791968 COMMITED=450363392 MAX=1908932608
NonHeap Memory: INIT=2555904 USED=24834632 COMMITED=26411008 MAX=-1
GC PS Scavenge VALID [PS Eden Space, PS Survivor Space] GC=161 GCT=440
GC PS MarkSweep VALID [PS Eden Space, PS Survivor Space, PS Old Gen] GC=2 GCT=532
ClassLoading LOADED=3118 TOTAL_LOADED=3118 UNLOADED=0
Total threads: 608 CPU=2454 (106.88%) USER=2142 (93.30%)
NEW=0 RUNNABLE=6 BLOCKED=0 WAITING=2 TIMED_WAITING=600 TERMINATED=0
main TID=1 STATE=RUNNABLE CPU_TIME=2039 (88.79%) USER_TIME=1970 (85.79%) Allocted: 640318696
com.google.common.util.concurrent.RateLimiter.tryAcquire(RateLimiter.java:337)
io.zhenbianshu.TestFuturePool.main(TestFuturePool.java:23)
RMI TCP Co