一、 人工智能基础理论
在深入大模型之前,坚实的AI基础知识不可或缺:
- 机器学习(Machine Learning):理解监督学习、无监督学习、强化学习的基本概念、常用算法(如线性回归、逻辑回归、决策树、SVM、K-Means等)及其适用场景。掌握模型评估指标(准确率、精确率、召回率、F1分数、ROC曲线等)。
- 深度学习(Deep Learning):熟悉神经网络的基本构成(神经元、激活函数、损失函数、反向传播算法、梯度下降优化器如SGD, Adam, RMSProp)。理解卷积神经网络(CNN)、循环神经网络(RNN)、长短期记忆网络(LSTM)等经典网络结构及其在图像、序列数据处理中的应用
- 自然语言处理(NLP)基础:了解词向量(Word Embeddings如Word2Vec, GloVe)、文本预处理、分词、命名实体识别(NER)、情感分析等基本概念和技术。
二、Transformer架构详解
Transformer模型是当前几乎所有主流大模型(如BERT、GPT系列)的基石,其核心机制必须深刻理解:
- 自注意力机制(Self-Attention Mechanism):理解其如何计算Query, Key, Value,并捕捉输入序列中不同位置之间的依赖关系,实现并行计算,克服RNN处理长序列的瓶颈。
- 多头注意力(Multi-Head Attention):了解其如何将注意力机制拆分为多个“头”,从不同子空间学习信息,增强模型的表达能力。
- 位置编码(Positional Encoding):理解Transformer为何需要位置编码来捕捉序列的顺序信息,以及常见的编码方式(如正弦余弦编码)。
- 编码器-解码器架构(Encoder-Decoder Architecture):掌握编码器如何处理输入序列,解码器如何生成输出序列,以及两者之间通过注意力机制的交互。
- 残差连接与层归一化(Residual Connections & Layer Normalization):理解它们在缓解梯度消失、加速模型收敛方面的重要作用。
2025年,对Transformer架构的改进仍在继续,例如探索更高效的注意力机制(如线性注意力、Agent Attention)以降低计算复杂度,使其能处理更长的上下文
三、 BERT与GPT系列模型
BERT和GPT是基于Transformer架构的两种代表性预训练语言模型,理解它们的原理、差异及应用至关重要:
BERT (Bidirectional Encoder Representations from Transformers) :
- 核心思想:通过Masked Language Model (MLM) 和 Next Sentence Prediction (NSP) 任务进行预训练,使其能够理解深层双向上下文信息。
- 特点:强大的自然语言理解能力,适用于文本分类、问答、命名实体识别等理解型任务。BERT主要使用Transformer的编码器部分。
- 局限性:不直接适用于文本生成任务,因其MLM预训练方式。
GPT (Generative Pre-trained Transformer):
-
核心思想:基于Transformer的解码器部分,采用自回归方式进行预训练,即根据上文预测下一个词。
-
特点:强大的文本生成能力,适用于对话系统、内容创作、代码生成等生成型任务。模型参数量不断增大,从GPT-1到GPT-3,再到更新的模型,展现出惊人的涌现能力。
-
发展:GPT系列持续进化,如GPT-4o在多模态和推理能力上表现卓越。
-
主要区别:BERT是双向编码器,侧重理解;GPT是单向解码器,侧重生成。BERT的预训练使其更适合微调于下游理解任务,而GPT则可以直接用于零样本或少样本生成。
四 2025年关键技术进展与热点
除了上述基础,面试中还可能考察对最新技术进展的了解:
- 多模态大模型 (MMM):如上文所述,融合文本、图像、视频、音频等多种信息来源。核心技术包括跨模态表征、模态对齐、模态翻译和协同生成 。视觉语言模型(VLM)是其中的重要分支,涉及视觉编码器(如ViT, ResNet)和语言模型的结合 。挑战包括生成一致性、上下文学习和复杂推理。预计2025年,OpenAI的GPT-5等模型将进一步推动多模态技术发展 。
模型轻量化 (Model Miniaturization/Lightweighting) :
- 技术手段:包括模型剪枝(Pruning)、参数量化(Quantization)、知识蒸馏(Knowledge Distillation)、低秩分解(Low-Rank Factorization)。
- 目标:在保持性能的同时,显著降低模型参数量和计算复杂度,使其能在资源受限的设备上运行。
- 最新进展:中国第三代自主超导量子计算机“本源悟空”成功运行十亿参数AI大模型微调任务,验证了量子计算在模型轻量化方面的潜力
自主智能体 (Autonomous AI Agents) :
- 核心能力:自主决策与执行、跨领域任务处理、架构创新。从指令驱动的“建议者”向自主行动的“执行者”转变。
- 关键技术:基于大模型的规划能力(如ReAct框架、思维树)、世界模型(如DreamerV3)、记忆机制、工具调用。
- 应用前景:自动化办公、个性化服务、复杂任务自动化(如自动筛选简历、软件开发辅助)。
检索增强生成 (RAG - Retrieval Augmented Generation):
- 原理:结合外部知识库的检索能力与大模型的生成能力,通过检索相关信息作为上下文输入给大模型,以提高生成内容的准确性和时效性,减少幻觉。
- 组件:文档加载、文本分割、向量嵌入、向量存储、检索器、大语言模型。
- 应用:智能问答、企业知识库、个性化推荐。许多岗位的任职要求中明确提出RAG相关经验 。
AI大模型数据半自动化标注 :
- 背景:高质量、大规模标注数据是训练优秀大模型的关键,但传统人工标注成本高、效率低。
- 方法:利用预训练模型进行预标注,人工进行校验和修正,或采用主动学习策略选择最有价值的数据进行标注。
- 趋势:从强手工标注发展到大模型辅助的半自动化标注,提升效率和质量
国产GPU与算力生态 :
- 背景:大模型训练和推理对高性能AI芯片(尤其是GPU)需求巨大,国产GPU的发展对国家AI战略至关重要。
- 进展:砺算科技首颗自研架构6nm GPU芯片成功点亮,摩尔线程等公司也在积极适配大模型应用,如DeepSeek模型。
- 趋势:国产GPU厂商如燧原、沐曦、壁仞、摩尔线程等正在竞速发展,未来AI算力生态将更加多元化。面试中可能会问到对国产化GPU(如鲲鹏、飞腾、海光等)的了解
求职者应关注这些领域的最新研究论文(如CVPR、NeurIPS、ICLR等顶会)、技术博客和开源项目,以保持知识的先进性。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
2024最新版CSDN大礼包:《AGI大模型学习资源包》免费分享**
一、2025最新大模型学习路线
一个明确的学习路线可以帮助新人了解从哪里开始,按照什么顺序学习,以及需要掌握哪些知识点。大模型领域涉及的知识点非常广泛,没有明确的学习路线可能会导致新人感到迷茫,不知道应该专注于哪些内容。
我们把学习路线分成L1到L4四个阶段,一步步带你从入门到进阶,从理论到实战。
L1级别:AI大模型时代的华丽登场
L1阶段:我们会去了解大模型的基础知识,以及大模型在各个行业的应用和分析;学习理解大模型的核心原理,关键技术,以及大模型应用场景;通过理论原理结合多个项目实战,从提示工程基础到提示工程进阶,掌握Prompt提示工程。
L2级别:AI大模型RAG应用开发工程
L2阶段是我们的AI大模型RAG应用开发工程,我们会去学习RAG检索增强生成:包括Naive RAG、Advanced-RAG以及RAG性能评估,还有GraphRAG在内的多个RAG热门项目的分析。
L3级别:大模型Agent应用架构进阶实践
L3阶段:大模型Agent应用架构进阶实现,我们会去学习LangChain、 LIamaIndex框架,也会学习到AutoGPT、 MetaGPT等多Agent系统,打造我们自己的Agent智能体;同时还可以学习到包括Coze、Dify在内的可视化工具的使用。
L4级别:大模型微调与私有化部署
L4阶段:大模型的微调和私有化部署,我们会更加深入的探讨Transformer架构,学习大模型的微调技术,利用DeepSpeed、Lamam Factory等工具快速进行模型微调;并通过Ollama、vLLM等推理部署框架,实现模型的快速部署。
整个大模型学习路线L1主要是对大模型的理论基础、生态以及提示词他的一个学习掌握;而L3 L4更多的是通过项目实战来掌握大模型的应用开发,针对以上大模型的学习路线我们也整理了对应的学习视频教程,和配套的学习资料。
二、大模型经典PDF书籍
书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础。(书籍含电子版PDF)
三、大模型视频教程
对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识。
四、大模型项目实战
学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。
五、大模型面试题
面试不仅是技术的较量,更需要充分的准备。
在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。
因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取