动态规划算法:有依赖的背包问题 (c++)

ques

输入格式

第一行有两个整数 N,V,用空格隔开,分别表示物品个数和背包容量。
接下来有 N 行数据,每行数据表示一个物品。
第 i 行有三个整数 vi,wi,pi,用空格隔开,分别表示物品的体积、价值和依赖的物品编号。
如果 pi=−1,表示根节点。 数据保证所有物品构成一棵树。

输出格式

输出一个整数,表示最大价值。

输入样例

5 7
2 3 -1
2 2 1
3 5 1
4 7 2
3 6 2

输出样例

11

背包问题循环顺序:
1.循环物品
2.循环体积
3.循环决策
思路:使用邻接表把树的各个节点存起来,之后进行dfs对树的节点进行遍历,因为每件物品只能选一次,所以采用0-1背包的思想:for(int j=m-v[u];j>=0;j–) 从后往前遍历,dp方程f[u][j]=max(f[u][j],f[u][j-k]+f[son][k]);

#include<bits/stdc++.h>
using namespace std;

const int N =110;

int h[N],e[N],ne[N],idx;
int v[N],w[N],f[N][N];
int n,m;

//使用邻接表对边的情况进行存储
void add(int a,int b)
{
	e[idx]=b,ne[idx]=h[a],h[a]=idx++;
}

void dfs(int u)
{
	for(int i=h[u];i!=-1;i=ne[i]) //遍历当前节点u的子节点(循环物品)
	{
		int son = e[i]; //要求得节点u ans,必须知道子节点son ans,进行dfs搜索
		dfs(son);
		for(int j=m-v[u];j>=0;j--) //循环体积
		{
		/*  
            对比01背包for(int j=V; j>=v[i]; --j)
            u必选所有情况必须留下v[u],不然u装不进背包里
        */
			for(int k=0;k<=j;k++)  //循环决策
			{
			/*
                子树to(以to为root的子树)有不同的选点方案。
                这些方案可以视为同一分组的不同物品(相对于u节点来说),则子树u有出度个不同分组。
                虽然不知道具体的方案,但子树不同的体积就类似于不同方案。(不同选取体积不同)
                那么就可以将子树的不同体积视为同一分组的具体物品。
                就将问题转换到分组背包问题

                对于dp[u][j]而言,他可以不选,或者从to的某一体积转移过去
            */
				f[u][j]=max(f[u][j],f[u][j-k]+f[son][k]); 
		}
	}
	for(int j=m;j>=v[u];j--) f[u][j]=f[u][j-v[u]]+w[u]; //加上刚刚默认选择的父节点价值
	for(int j=0;j<v[u];j++)  f[u][j]=0; //体积连v[u]都不足表示连根节点都装不下,赋值为0
}

int main()
{
    memset(h,-1,sizeof h);
	int root;
	cin>>n>>m;
	for(int i=1;i<=n;i++)
	{
		int p;
		cin>>v[i]>>w[i]>>p;
		if(p==-1) root=i;  //如果p为-1,则其为根节点
		else add(p,i);
	}
	dfs(root);
	cout<<f[root][m]<<endl; //输出以root为根,体积为m时的最大价值
	return 0;
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Jay_fearless

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值