XTU-OJ 1146-矩阵乘法

大家可能也发现我是实时更新的,所以大家可以多点赞,觉得不懂的或者有些建议请留言评论,多给我些反馈,可以让我更好的编写博客内容。

题目描述

给你两个矩阵A(n*k),B(k*m),请求A*B。

输入

第一行是一个整数K,表示样例的个数。 每个样例包含两个矩阵A和B。 每个矩阵的第一行是两个整数n,m,(1≤n,m≤10)表示矩阵的行和列 以后的n行,每行m个整数,每个整数的绝对值不超过100。输入保证A和B是可乘的。

输出

输出每个样例的结果矩阵,矩阵的整数之间用一个空格隔开,行尾无空格。

样例输入
2
2 2
1 1
1 1
2 1
1
1
2 2
1 1
1 1
2 2
1 1
1 0
 
样例输出
2
2
2 1
2 1

解题思路:本题就是在于 矩阵运算,其他的没什么大问题,细节注意 两矩阵相乘,新的行列是左矩阵的和右矩阵的组成的。所以注意 20、 22 、25 行的for循环的判断值。

AC代码:

#include <stdio.h>

int K,n1,m1,n2,m2;
int A[11][11],B[11][11],C[11][11];

int main()
{
    scanf("%d",&K);
    while ( K --)
    {
        scanf("%d %d",&n1,&m1);                 // 输入
        for (int i = 1; i <= n1; i ++)
            for (int j = 1; j <= m1; j ++)
            scanf("%d",&A[i][j]);   
        scanf("%d %d",&n2,&m2);
        for (int i = 1; i <= n2; i ++)
            for (int j = 1; j <= m2; j ++)
            scanf("%d",&B[i][j]);

        for (int i = 1; i <= n1; i ++)          // 矩阵相乘
        {
            for (int j = 1; j <= m2; j ++)
            {
                int t = 0;
                for (int k = 1; k <= m1; k ++)
                    t += (A[i][k]*B[k][j]);
                C[i][j] = t;
            }
        }

        for (int i = 1; i <= n1; i ++)          // 输出
        {
            printf("%d",C[i][1]);
            for (int j = 2; j <= m2; j ++)
                printf(" %d",C[i][j]);
            puts("");
        }
    }
    return 0;
}

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值