XTU-OJ 1452-完全平方数

完全平方数#

题目描述#

n是一个奇数,求n个连续的非负整数,a,a+1,a+2,…,a+n−1,使得这些数的和为一个完全平方数。

求满足条件最小的a。

输入格式#

第一行是一个整数T(1≤T≤1000),表示样例的个数。

以后每行一个整数n(1≤n<109)。

输出格式#

每行依次输出一个样例的结果。

样例输入#

2
1
3

样例输出#

0
2

解题思路:等差数列前n项求和公式:Sn = n*(2a + n-1)/2 = n*(a + (n-1)/2).  令 t = (n-1)/2.  所以 Sn = n*(a + t)。 

  1. 要令Sn = i^2 , 最直接的是 i = n, 则 a = (n+1)/2 。这答案也是无“更优解”的时候的解。
  2. 前面也写过质因数分解,知道 每个数都可以被分解成 质因数的乘积。 所以什么时候可能有更优解? 当 n 有平方因子的时候。 因为这时候可以对 n 进行化简。 设 n = c^2 * n0;
  3. 令化简之后的 n0*(a + t) = i' ^2, 可能比  1.  有更小的 a 解。此时 从 i'' = 0 开始枚举,找到a的值: a =  i'' ^2 * n0 - t  >= 0.
  4. 各等式的关系式: Sn = n*(a + t) =  c^2 * n0*(a + t) = i^2;    n0*(a + t) = i' ^2........@2;     i'' * n0 = i' 
  5. 最后一步为啥还要 把 i' 转换成 i'' * n0,因为如果直接对 @2 式子移项计算 a ,a = i'^2 / n0 - t,则还需要验证 i^2 能否整除 n0, 换成乘法运算就不需要这一步的验证。

AC代码: 

#include <stdio.h>

const int MAXN = 1e9;
int square[32000] = {0};

int main()
{
    int cnt = 0;
    for (int i = 1; i*i <= MAXN; i += 1)
        square[++cnt] = i*i;
    cnt ++;
    square[cnt] = cnt*cnt;
    int T,n,n0,a,t;
    scanf("%d",&T);
    while ( T --)
    {
        scanf("%d",&n);
        n0 = n; t = (n-1)/2;

        for (int i = 3; square[i] <= n0; i += 2)
            while (n0%square[i] == 0)
                n0 /= square[i];
                
        if (n0 == n)
        {
            if (n == 1)  puts("0");
            else         printf("%d\n",(n+1)/2);
        }
        else
        {
            for (int i = 0; ; i ++)
            {
                a = square[i]*n0 - t;
                if (a >= 0)
                {
                    printf("%d\n",a);
                    break;
                }
            }
        }
    }
    return 0;
}

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值