本文讲述了环形染色问题,属于排列组合
如图所示,一个圆环被分成 m 块,用 n 种不同颜色给每一块染色,要求相邻两块的颜色不相同。此类问题称之为环形染色问题。
首先,先用分类讨论来讲一下
的情况
首先,加编号
先考虑A——>4(n)种
B——>3(n-1)种
①:A=C
C——>1(A)种
D——>3 【n(4) - A/C(1)=3】种
![]()
②:A≠C
C——>2【n(4) - A(1) - B(1) = 2】种
D——>2【n(4) - A(1) - C(1) = 2】种
有没有通项公式,那肯定有!
令一数列 :m=i 的情况数
Step 1:把环变成条
情况数记作,为什么不用多说,乘法原理即可(mj是第 j 个点的情况数)
那与
有啥区别?
对,
那
所以剩余情况就是(其他也都满足要求)
可得一个式子:记作①式
结束了吗,NO!
Step 2:
右式换个模样:
移项可得,记作②式
令一数列 b,记作③式
那记作④式
①式移项可得:
把的值带入④式
所以 b 为等比数列
已知
那
等比数列,那
把带入此式,
③式移项:
把的值带入此式
验:当n=4,m=4,
中心区域染色
圆环有m块区域,再加上中心区域共有m+1块区域;有n+1种颜色
由于中心区域与外环所有区域均相邻,则先涂中心区域,有n+1种涂色方法;
这个优先考虑(m+1),因为它影响了1~m里的所有块(1~m都不能和m+1一样),其余就是
所以答案是