【转】本文来自 庞老板 的CSDN 博客 ,全文地址请点击:https://blog.csdn.net/code_pang/article/details/8759600?utm_source=copy
动态规划法。
设字符串为S,长度为L,d[i][j]表示以第i个字符为首,第j个字符为尾的字符串构成回文最少需要添加的字符个数,i和j的初值分别为1、L。 如果S[i] == S[j],即字符串两端的字符相等,d[i][j] = d[i+1][j-1], 即d[i][j]等于去掉头尾后的字符串的d值。 如果S[i] != S[j],此时划分出两个子问题,求d[i][j-1]和d[i+1][j],它两中较小的值再加1即为d[i][j](加上的1个字符是用于和S[i]或者S[j]构成对称的)。
状态转移方程:
开始想的是栈的结构,,好像十分复杂 不论是时间还是空间,,有机会补一下具体程序
另一种方法是需要加的字符的个数=原来字符串的长度-原来字符串和逆字符串的最长公共子序列的长度。 然后用滚动数组