动态规划--每日一练(计数类DP之路径数量)

P1002 [NOIP 2002 普及组] 过河卒

1.题目描述

棋盘上 A 点有一个过河卒,需要走到目标 B 点。卒行走的规则:可以向下、或者向右。同时在棋盘上 C 点有一个对方的马,该马所在的点和所有跳跃一步可达的点称为对方马的控制点。因此称之为“马拦过河卒”。

棋盘用坐标表示,A 点 (0,0)、B 点 (n,m),同样马的位置坐标是需要给出的。

现在要求你计算出卒从 A 点能够到达 B 点的路径的条数,假设马的位置是固定不动的,并不是卒走一步马走一步。

输入格式

一行四个正整数,分别表示 B 点坐标和马的坐标。

输出格式

一个整数,表示所有的路径条数。

输入 

6 6 3 3

输出 

6

说明/提示

对于 100% 的数据,1≤n,m≤20,0≤ 马的坐标 ≤20。

【题目来源】

NOIP 2002 普及组第四题

2.代码展示

#include<iostream>
#include<vector>
#include<algorithm>
#include<queue>
#define int long long
using namespace std;

int n, m, x, y;
int dp[25][25], visited[25][25];
// 马的8个控制点的相对坐标
int horse_dx[8] = { -2, -1, 1, 2, 2, 1, -1, -2 };
int horse_dy[8] = { 1, 2, 2, 1, -1, -2, -2, -1 };

void cal() {
    // 输入的坐标转换为数组索引(题目中坐标从0开始)
    // 马的位置
    int horse_x = x;
    int horse_y = y;

    // 标记马及其控制点⚠️⚠️⚠️
    if (horse_x >= 0 && horse_x <= n && horse_y >= 0 && horse_y <= m) {
        visited[horse_x][horse_y] = true;
    }

    for (int i = 0; i < 8; i++) {
        int nx = horse_x + horse_dx[i], ny = horse_y + horse_dy[i];
        if (nx >= 0 && nx <= n && ny >= 0 && ny <= m) {
            visited[nx][ny] = true;
        }
    }

    // 初始化起点
    dp[0][0] = 1;   //⚠️⚠️⚠️注意初始化

    // 状态转移
    for (int i = 0; i <= n; i++) {
        for (int j = 0; j <= m; j++) {
            if (visited[i][j]) continue;  // 如果当前点被控制,跳过
            if (i == 0 && j == 0) continue;  // 起点已初始化

            // 从上方来的路径数
            if (i > 0 && !visited[i - 1][j]) {
                dp[i][j] += dp[i - 1][j];
            }
            // 从左方来的路径数
            if (j > 0 && !visited[i][j - 1]) {
                dp[i][j] += dp[i][j - 1];
            }
        }
    }
    cout << dp[n][m];
}

signed main() {
    cin >> n >> m >> x >> y;
    cal();
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值