Description
Farmer John has been informed of the location of a fugitive cow and wants to catch her immediately. He starts at a point N (0 ≤ N ≤ 100,000) on a number line and the cow is at a point K (0 ≤ K ≤ 100,000) on the same number line. Farmer John has two modes of transportation: walking and teleporting. * Walking: FJ can move from any point X to the points X - 1 or X + 1 in a single minute * Teleporting: FJ can move from any point X to the point 2 × X in a single minute. If the cow, unaware of its pursuit, does not move at all, how long does it take for Farmer John to retrieve it?
Input
Line 1: Two space-separated integers: N and K
Output
Line 1: The least amount of time, in minutes, it takes for Farmer John to catch the fugitive cow.
Sample
Input
5 17
Output
4
Hint
poj3278 有链接提示的题目请先去链接处提交程序,AC后提交到SDUTOJ中,以便查询存档。
The fastest way for Farmer John to reach the fugitive cow is to move along the following path: 5-10-9-18-17, which takes 4 minutes.
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<iostream>
#include<algorithm>
#include<queue>
using namespace std;
const int N = 200100;
int n, k;
struct node
{
int x, step;
};
int vis[N];
void BFS(node w1)
{
int X,STEP;
queue<node>Q;
Q.push(w1);
while(!Q.empty())
{
node w2= Q.front();
Q.pop();
X=w2.x;
STEP=w2.step;
if(X == k)
{
printf("%d\n",STEP);
return ;
}
if(X >= 1 && vis[X - 1]==0)//向左走
{
node w3;
vis[X-1]=1;
w3.x=X-1;
w3.step=STEP + 1;
Q.push(w3);
}
if(X <= k && vis[X + 1]==0)
{
node w3;
vis[X+1] = 1;
w3.x = X + 1;
w3.step = STEP + 1;
Q.push(w3);
}
if(X <= k && vis[X * 2]==0)
{
node w3;
vis[X * 2] = 1;
w3.x = 2 * X;
w3.step = STEP + 1;
Q.push(w3);
}
}
}
int main()
{
while(scanf("%d%d",&n,&k)!=EOF)
{
memset(vis,0,sizeof(vis));
vis[n] = 1;
node w1;
w1.x = n;
w1.step = 0;
BFS(w1);
}
return 0;
}