语音识别技术是一种将语音信号转换为文本形式的技术,它在过去几十年中取得了显著的进展。随着计算能力的提升和机器学习算法的发展,语音识别系统的准确性和性能得到了大幅度的改善。本文将介绍语音识别技术的发展现状,并提供相应的源代码示例。
- 数据集和模型训练
在语音识别领域,数据集的质量对于模型的训练至关重要。现如今,有许多公开可用的大规模语音数据集,如LibriSpeech和Common Voice等,这些数据集包含了成千上万小时的语音数据。这些数据集可以用于训练深度学习模型,如循环神经网络(RNN)和转录注意力模型(Transducer)等。
以下是使用Python和Keras库训练语音识别模型的示例代码:
import keras
from keras.models import Sequential
from keras.layers import</