Je_san
码龄5年
关注
提问 私信
  • 博客:43,459
    43,459
    总访问量
  • 9
    原创
  • 1,556,818
    排名
  • 0
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:广东省
  • 加入CSDN时间: 2019-12-20
博客简介:

Je_san的博客

查看详细资料
个人成就
  • 获得20次点赞
  • 内容获得7次评论
  • 获得181次收藏
  • 代码片获得263次分享
创作历程
  • 3篇
    2022年
  • 6篇
    2021年
成就勋章
TA的专栏
  • 机器学习
    7篇
兴趣领域 设置
  • 数据结构与算法
    排序算法推荐算法
创作活动更多

2024 博客之星年度评选报名已开启

博主的专属年度盛宴,一年仅有一次!MAC mini、大疆无人机、华为手表等精美奖品等你来拿!

去参加
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

[Python]开着代理出现SSLError

代理SSLError
原创
发布博客 2022.07.23 ·
4068 阅读 ·
5 点赞 ·
3 评论 ·
6 收藏

MacOS下jupyter默认打开路径设置

~
原创
发布博客 2022.06.29 ·
1888 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

gpu版pytorch安装

快速简明的pytorch-gpu安装教程
原创
发布博客 2022.06.27 ·
1897 阅读 ·
1 点赞 ·
0 评论 ·
5 收藏

[机器学习]Kmeans聚类算法和性能指标

文章目录一、Kmeans算法及其优缺点1.简单介绍2.K-means的优点与缺点二、性能指标1.选择K值手肘法轮廓系数CH指标sklearn提供的方法2.其他性能指标资料整理一、Kmeans算法及其优缺点跳过算法原理1.简单介绍Kmeans算法是基于划分的聚类算法,其优化目标是同类的点尽量近,类间的点尽量远。需要做的是(1)给定聚类个数K(2)选择K个初始点,可以是随机值,也可以是随机的样本点(3)迭代至终止条件经典K-means算法具体流程,基于贪心策略(1)随机地选择k个初始点,每
原创
发布博客 2021.12.01 ·
19202 阅读 ·
12 点赞 ·
0 评论 ·
130 收藏

[Pandas]Dataframe赋值

在进行Titanic幸存者预测的过程中,数据预处理涉及到空值填充。我的想法是以Pclass分组,为Age的空值填充随机值x~U(mean-σ,mean+σ)文章目录一、warning二、1.取值赋值2. .loc()一、warning开始是参考其他文章的做法,但情况不一样,那篇文章并没有分组赋值,由于不涉及分组,所以对dataframe赋值时是一整列进行赋值的,而这是pandas官方建议的赋值方法之一import pandas as pdimport numpy as nptrain_d
原创
发布博客 2021.11.08 ·
10551 阅读 ·
1 点赞 ·
0 评论 ·
13 收藏

[错误合集]Anaconda3安装tensorflow错误

Anaconda3安装tensorflow错误提示版本Anaconda3-4.2.0,python3.5.2,安装tensorflow 1.7.0,依赖numpy 1.13.3错误提示如下Collecting numpy>=1.13.3 (from tensorflow==1.7.0) Using cached https://files.pythonhosted.org/packages/f3/1f/fe9459e39335e7d0e372b5e5dcd60f4381d3d1b42f0b9
原创
发布博客 2021.06.11 ·
295 阅读 ·
0 点赞 ·
3 评论 ·
0 收藏

机器学习——softmax回归多分类算法(Iris数据集)

机器学习——对数几率回归(Iris数据集)一、二、一、二、参考https://blog.csdn.net/qq_41398808/article/details/90294506https://www.ngui.cc/51cto/show-531289.html
原创
发布博客 2021.04.03 ·
1804 阅读 ·
0 点赞 ·
0 评论 ·
15 收藏

机器学习——sigmoid函数溢出问题

RuntimeWarning: overflow encountered in expdef sigmoid(z):def sigmoid(z): return 1.0 / (1 + np.exp(-z)) 改为def sigmoid(z): #防止溢出 if z >= 0: return 1.0 / (1 + np.exp(-z)) else: return np.exp(z) / (1 + np.exp(z))...
原创
发布博客 2021.03.29 ·
1027 阅读 ·
1 点赞 ·
1 评论 ·
1 收藏

机器学习——模型评估、样本分组、性能度量(Iris数据集)

机器学习——Iris数据集一、样本分组1.留出法2.交叉验证法3.自助法二、性能度量1.错误率与精度2.查准率、查全率与F1总结第三周的理论课课后作业,对模型进行评估对Iris数据集,分别采用SVM算法的线性核、高斯核函数,数据集划分方法分别采用留出法、10折交叉验证法、自助法(可选),性能度量分别采用计算错误率、精度、第一类的查准率和查全率、F1、ROC绘制(可选)进行实验。以表格形式呈现结果,并适当进行分析讨论。(参考网址:https://www.cnblogs.com/luyaoblog/p/67
原创
发布博客 2021.03.29 ·
2489 阅读 ·
0 点赞 ·
0 评论 ·
11 收藏