CAP定理
在理论计算机科学中,CAP定理,也可以用计算机科学家Eric Brewer命名称为Brewer定理,指出分布式数据存储不可能同时提供以下三种保证中的两种以上:
- 一致性(Consistency)
- 每次读取都能收到最近一次的写或者出错
- 可用性(Availability)
- 每次请求都能收到一个(非出错的)响应——并不保证包含最新写的
- 分区容错性(Partition tolerance)
- 尽管任意数量的消息被节点间的网络丢弃或者延迟,但是系统持续运转
当一个网络分区故障发生的时候,我们应该决定:
- 取消操作并因此降低可用性,但是保证了一致性 CP
- 继续处理操作并因此提供了可用性,但是带来了数据不一致的风险 AP
特别地,CAP定理指出当存在网络分区的时候,必须在可用性和一致性中做出选择。
特别注意,CAP定理中的一致性(Consistency)跟数据库事务中的ACID特性中的一致性完全不同。
解释
没有分布式系统可以避免网络故障,因此通常必须容忍网络分区。在存在分区的情况下,剩下的两个选项就只能选择其中一个:一致性或可用性。
- 在选择一致性而非可用性时,如果由于网络分区而无法保证特定信息是最新的,则系统将返回错误或超时。
- 在选择可用性而非一致性时,即使由于网络分区而无法保证其是最新的,系统将始终处理查询并尝试返回最新版本的可用信息。
在没有网络故障的情况下 - 也就是说,当分布式系统正常运行时 - 可以满足可用性和一致性。
CAP经常被误解,好像必须始终选择放弃三种保证中的一种。实际上,只有在发生网络分区或故障时,才在一致性和可用性之间进行选择; 在所有其他时间,不需要进行任何权衡(trade-off)。
在传统ACID保证之下设计的数据库系统,例如RDBMS,选择一致性而非可用性;而基于BASE理念设计的系统,例如NoSQL运动中常见的,选择可用性而不是一致性。
PACELC定理以CAP为基础,即使在没有分区的情况下,也会在延迟和一致性之间进行另一次权衡。