CAP定理

CAP定理,也称为Brewer定理,指出分布式数据存储在一致性、可用性和分区容错性三者中不能同时实现。在网络分区故障时,系统必须在保持数据一致性和持续提供服务之间做出选择。此定理在分布式系统设计中起着关键作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

CAP定理

在理论计算机科学中,CAP定理,也可以用计算机科学家Eric Brewer命名称为Brewer定理,指出分布式数据存储不可能同时提供以下三种保证中的两种以上:

  • 一致性(Consistency)
    • 每次读取都能收到最近一次的写或者出错
  • 可用性(Availability)
    • 每次请求都能收到一个(非出错的)响应——并不保证包含最新写的
  • 分区容错性(Partition tolerance)
    • 尽管任意数量的消息被节点间的网络丢弃或者延迟,但是系统持续运转

当一个网络分区故障发生的时候,我们应该决定:

  • 取消操作并因此降低可用性,但是保证了一致性 CP
  • 继续处理操作并因此提供了可用性,但是带来了数据不一致的风险 AP

特别地,CAP定理指出当存在网络分区的时候,必须在可用性和一致性中做出选择。

特别注意,CAP定理中的一致性(Consistency)跟数据库事务中的ACID特性中的一致性完全不同。

解释

没有分布式系统可以避免网络故障,因此通常必须容忍网络分区。在存在分区的情况下,剩下的两个选项就只能选择其中一个:一致性或可用性。

  • 在选择一致性而非可用性时,如果由于网络分区而无法保证特定信息是最新的,则系统将返回错误或超时。
  • 在选择可用性而非一致性时,即使由于网络分区而无法保证其是最新的,系统将始终处理查询并尝试返回最新版本的可用信息。

在没有网络故障的情况下 - 也就是说,当分布式系统正常运行时 - 可以满足可用性和一致性。

CAP经常被误解,好像必须始终选择放弃三种保证中的一种。实际上,只有在发生网络分区或故障时,才在一致性和可用性之间进行选择; 在所有其他时间,不需要进行任何权衡(trade-off)。

在传统ACID保证之下设计的数据库系统,例如RDBMS,选择一致性而非可用性;而基于BASE理念设计的系统,例如NoSQL运动中常见的,选择可用性而不是一致性。

PACELC定理以CAP为基础,即使在没有分区的情况下,也会在延迟和一致性之间进行另一次权衡。

参考资料

1 CAP定理 https://en.wikipedia.org/wiki/CAP_theorem

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值