基于禁忌搜索算法求解函数极值问题(含Matlab源码)

91 篇文章 ¥59.90 ¥99.00
本文介绍了禁忌搜索算法的基本原理,该算法用于避免局部最优解并增加搜索多样性。文章详细阐述了算法流程,并提供了使用Matlab实现的源代码框架,强调了参数设置对算法性能的影响,旨在帮助读者理解和应用该算法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

禁忌搜索算法是一种经典的优化算法,常被用于求解函数的极值问题。它通过在搜索过程中引入“禁忌表”来避免陷入局部最优解,并利用“禁忌历史”来指导搜索方向。本文将介绍禁忌搜索算法的原理,并给出使用Matlab实现该算法的源代码。

禁忌搜索算法的基本思想是在搜索过程中维护一个“禁忌表”,记录一些不允许在接下来的几步中选择的解。这样做的目的是为了避免搜索过程陷入局部最优解,增加搜索的多样性。禁忌表的大小和禁忌期限是算法的两个重要参数,需要根据问题的特点进行调整。

以下是禁忌搜索算法的基本流程:

  1. 初始化禁忌表和当前解:将禁忌表置为空,随机生成一个初始解作为当前解。
  2. 进入搜索循环:
    a. 生成当前解的相邻解集:根据问题的特点,生成当前解的相邻解集。常见的方法包括变换当前解的某个部分或参数,或者随机生成与当前解相似的解。
    b. 选择下一个解:从相邻解集中选择一个解作为下一个解。选择策略可以根据问题的特点进行设计,常见的策略有贪心选择、随机选择或基于启发式规则的选择。
    c. 更新禁忌表:将选择的解加入禁忌表,并更新禁忌表中其他解的禁忌期限。
    d. 更新当前解:将选择的解设为当前解。
    e. 判断终止条件:如果满足终止条件(例如迭代次数或达到预设的目标值),则跳出搜索循环;否则,返回步骤2b。

下面给

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值