禁忌搜索算法是一种经典的优化算法,常被用于求解函数的极值问题。它通过在搜索过程中引入“禁忌表”来避免陷入局部最优解,并利用“禁忌历史”来指导搜索方向。本文将介绍禁忌搜索算法的原理,并给出使用Matlab实现该算法的源代码。
禁忌搜索算法的基本思想是在搜索过程中维护一个“禁忌表”,记录一些不允许在接下来的几步中选择的解。这样做的目的是为了避免搜索过程陷入局部最优解,增加搜索的多样性。禁忌表的大小和禁忌期限是算法的两个重要参数,需要根据问题的特点进行调整。
以下是禁忌搜索算法的基本流程:
- 初始化禁忌表和当前解:将禁忌表置为空,随机生成一个初始解作为当前解。
- 进入搜索循环:
a. 生成当前解的相邻解集:根据问题的特点,生成当前解的相邻解集。常见的方法包括变换当前解的某个部分或参数,或者随机生成与当前解相似的解。
b. 选择下一个解:从相邻解集中选择一个解作为下一个解。选择策略可以根据问题的特点进行设计,常见的策略有贪心选择、随机选择或基于启发式规则的选择。
c. 更新禁忌表:将选择的解加入禁忌表,并更新禁忌表中其他解的禁忌期限。
d. 更新当前解:将选择的解设为当前解。
e. 判断终止条件:如果满足终止条件(例如迭代次数或达到预设的目标值),则跳出搜索循环;否则,返回步骤2b。
下面给