【创新实训2】Appearance-Based Gaze Estimation in the Wild 阅读

本文介绍了MPIIGaze数据集,包含大量日常笔记本使用环境下的眼睛图像,具有高光照和外观变化。提出了多模式CNN的外观基凝视估计方法,优于现有技术。数据集分为原始和标准化部分,包含详细的注释信息,用于模型训练和评估。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

摘要:

这篇文章提供了MPIIGaze数据集,其中包含从15位参与者收集的213,659张图片,均在超过三个月的日常笔记本电脑使用期间采集的。在外观和光照方面,该数据集比现有数据集更具可变性。文中还提出了一种使用多模式卷积神经网络进行基于外观的视线估计的方法,该方法在最具挑战性的跨数据集评估中明显优于最先进的方法(2015 CVPR)

相比之前的一些数据集的采集条件较为严格,眼睛外观的可变性有限,并且假设头部姿势估计准确,局限性较大。

视线估计

  视线估计方法可以是基于模型的或基于外观的[12]。基于模型的方法使用几何眼睛模型,并且可以进一步分为角膜反射和基于形状的方法,这取决于是否需要外部光源来检测眼睛特征。基于角膜反射的早期研究方法主要集中在静止设置[36,30,13,51],后来扩展到使用多个光源或相机处理任意头部姿势[52,53]。相比之下,基于形状的方法[16,4,50,44]直接从观察到的眼睛形状(例如瞳孔中心或虹膜边缘)推断凝视方向。但两者准确度都较低,并且不清楚基于形状的方法是否能够稳健地处理低图像质量和可变光线条件。    基于外观的凝视估计方法直接使用眼睛图像作为输入,因此可以使用低分辨率眼睛图像。虽然早期多是固定的头部姿势[3,42,48,35,27,24],但近期的工作主要集中在3D头部姿势估计的方法[25,26,9,6]。然而,基于外观的方法需要比基于模型的方法更大量的用户特定训练数据,并且担心模型的泛化能力

 

数据集

远程凝视估计对于许多应用具有重要意义,例如基于凝视的用户交互界面和驾驶员状态监测系统。在无约束条件下,学习发现眼部区域的标志物是实现远程凝视估计的关键步骤之一。 眼部区域标志物定位的目标是通过分析眼部图像定位眼睛的重要特征点。这些特征点通常包括瞳孔、眼睑、眼角等。定位这些标志物对于准确估计人眼的凝视点至关重要。 为了实现眼部区域标志物定位,可以采用机器学习方法。首先,需要构建一个具有标记的眼部图像的训练数据集。这些标记可以由专业人员手动标注,或者使用自动标记算法进行生成。然后,可以使用已知标记的训练数据集来训练一个机器学习模型,例如卷积神经网络。 训练完成后,可以使用该模型来对新的眼部图像进行标志物定位。这个过程通常包括两个步骤:眼部图像预处理和标志物定位。眼部图像预处理包括对图像进行裁剪、调整亮度对比度等操作,以便更好地为模型提供输入。标志物定位是通过输入预处理后的图像,使用训练好的模型来定位眼部特征点。 眼部区域标志物定位的性能通常通过准确率、鲁棒性和计算效率进行评估。准确率可以通过与手动标注的标记进行比较来衡量。鲁棒性是指模型对于不同环境、姿势和光照条件的适应能力。计算效率是指标志物定位所需的时间和计算资源。 总之,通过机器学习方法学习发现眼部区域标志物是实现远程凝视估计的重要步骤。这个过程包括构建训练数据集、训练机器学习模型以及使用模型进行眼部区域标志物定位。这种技术可以为无约束条件下的远程凝视估计提供准确和高效的解决方案。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值