这个春节AI圈很热闹,想必大家都有目共睹,而DeepSeek绝对是其中最耀眼的存在。
作为一个长期在CSDN潜水人,我也忍不住想出来冒个泡,聊聊这个让人惊艳的DeepSeek。
DeepSeek成立于2023年7月,别看它年轻,却在AI领域一路狂飙。2024年发布了DeepSeek - V2、V3,2025年1月20日又推出了DeepSeek - R1,直接登顶中国和美国的苹果App Store应用商店。
DeepSeek能如此厉害,靠的是实打实的技术。在自然语言处理方面,它采用优化后的Transformer架构,让语言理解和生成更加自然流畅。不管是日常聊天还是专业知识问答,都不在话下。而且在数据处理上也很精细,保证了模型能学到丰富准确的知识,泛化能力超强。在机器学习和深度学习领域,混合专家(MoE)和多头潜在注意力(MLA)技术是它的“秘密武器”。这俩技术让模型只需激活部分参数就能高性能运行,大大减少了计算资源的消耗。DeepSeek - R1更是厉害,用纯深度学习让AI涌现推理能力,摆脱了对监督微调的依赖,开辟了AI发展新路径。
性能方面,DeepSeek - R1在数学、代码、自然语言推理等任务中表现超出色。数学能力测试中,解决研究生级别的数学题比OpenAI的o1模型还快。代码生成不仅语法对,结构还好,可读性强,开发效率直接起飞。在自然语言推理的GLUE基准测试中,得分也远超同类模型。
成本优势也是DeepSeek的一大杀器。DeepSeek - R1的预训练费用只有557.6万美元,仅是OpenAI GPT - 4o模型训练成本的不到十分之一。这就大大降低了AI技术的应用门槛,让更多企业和开发者能参与到AI创新中来。
不过,DeepSeek的出现也带来了一些挑战。比如开源虽然促进了技术交流,但知识产权保护就成了难题。还有,低成本高性能可能会引发行业恶性竞争,影响整个AI行业的健康发展。
总之,DeepSeek的出现是AI领域的一次重大突破,为我们展示了AI发展的新方向和新可能。但我们也要清醒地看到,AI还有很长的路要走,还有很多挑战需要去克服。希望未来能有更多像DeepSeek这样的创新,推动AI技术不断向前发展。