kafka进阶笔记 首先需要确定虚拟机的ip地址,看网上的教程除了使用ifconfig命令查虚拟机ip外,最好还是Windows和虚拟机互相ping一下,能ping通才基本满足通讯条件(网上写可能虚拟机开了防火墙ping不通,我这个能直接ping通)。虚拟机 ping WindowsWindows ping 虚拟机。
测试工具JMeter的使用 这个问题前后花了我三四个小时,上述教程我在很前期就见过,也照着做了,但是在查ip的时候我偷懒在浏览器搜的本机ip,查到的是本机对外(公网)的一个ip,但是教程中用的是一个局域网ip,导致就各种尝试都不对,真tm开心。这些操作尽可能快的做完,录制上,然后点击自己录制的结果,翻阅一下,把链接不是来自192.168.172.1的那些请求删掉(可能是浏览器本身在刷新访问其他页面,含有一些隐形的操作也被录了进来)测试过程中,被测系统换了, 就要换配置的地址, 要手动修改 请求参数,请求取样器多了, 就非常麻烦了。
【76】论文阅读Learning Procedure-aware Video Representation from Instructional Videos and Their Narrations 在这项工作中,作者建议学习视频表征,基于网络instructional videos及其叙述的大规模数据集,在不使用人工注释的情况下,对动作步骤及其时间顺序进行编码。本模型在step分类(+2.8%/+3.3%在COIN / EPIC-Kitchens)和step预测(+7.4%在COIN)上显著提高了最新的结果。此外,本模型在step分类和预测的zero-shot推理以及对不完整过程的不同和合理步骤的预测方面取得了很好的结果。
论文阅读 【79】CVPR 2023 How you feelin’? Learning Emotions and Mental States in Movie Scenes 本文工作:提出了EmoTx,这是一种基于多模态Transformer的架构,它可以利用视频、多个角色和对话来进行联合预测。通过利用MovieGraphs数据集中的注释,目标是预测典型的情绪(例如快乐、愤怒)和其他精神状态(例如诚实、乐于助人)。
论文阅读 【77】A Ranking-Based Cross-Entropy Loss for Early Classification of Time Series,SCI 一区 本文提出了一种基于ranking的交叉熵损失(RCE)方法,从时间序列数据中共同学习类的特征和早期顺序。这样,RCE可以帮助分类器生成具有更可区分边界的时间序列在不同阶段的概率分布。从而最终提高了每个时间步的分类精度。此外,为了提高方法的适用性,作者还将学习过程集中在高阶样本上,从而加快了训练过程。
阅读论文【78】 CVPR 2023 Procedure-Aware Pretraining for Instructional Video Understanding 作者认为,instructional video描述了在相同或不同任务的实例之间重复的步骤序列,并且这种结构可以用程序知识图(Procedural Knowledge Graph,PKG)很好地表示,其中节点是离散的步骤,边连接instructional活动中顺序发生的步骤。然后可以使用该图生成伪标签来训练视频表征,该表征以更易于访问的形式对程序性知识编码,以推广到多个过程理解任务。
JDBC 2023年最新学习笔记! 我的笔记是来源于尚硅谷的赵伟风老师的2023年最新版jdbc的课程我将我的笔记和练习时所使用的代码全部上传到了我的Gitee仓库中,仓库链接:https://gitee.com/Jenniferlalala/learn_-jdbc/tree/master如有侵权,请及时联系 !
论文阅读 Forecasting Human-Object Interaction: Joint Prediction of Motor Attention and Actions in First Forecasting Human-Object Interaction: Joint Prediction of Motor Attention and Actions in First Person VideoECCV 2020task:anticipating human-object interaction in first person videos
论文阅读 Colar: Effective and Efficient Online Action Detection by Consulting Exemplars Colar: Effective and Efficient Online Action Detection by Consulting ExemplarsCVPR 2022task:在线动作识别
论文阅读 End-to-End Semi-Supervised Learning for Video Action Detection End-to-End Semi-Supervised Learning for Video Action Detection的阅读笔记 CVPR 2022task:端到端的半监督视频动作检测方法
论文阅读 X3D: Expanding Architectures for Efficient Video Recognition X3D: Expanding Architectures for Efficient Video Recognition论文分享Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition CVPR 2020 task:将二维方法拓展到三维的视频识别方法
论文阅读 Skeleton-based abnormal gait recognition with spatio-temporal attention enhanced Skeleton-based abnormal gait recognition with spatio-temporal attention enhanced gait-structural graph convolutional networksNeurocomputing 2022task:基于骨架特征的步态识别
论文阅读 Aggregating Long-Term Context for Learning Laparoscopic and Robot-Assisted Surgical Workflows 关于长时间外科工作流识别的一篇论文分享
论文阅读 Intention Recognition of Pedestrians and Cyclists by 2D Pose Estimation 关于行人和骑自行车者过马路的意图理解的一篇论文分享