- 博客(12)
- 资源 (7)
- 收藏
- 关注
原创 【天池大数据竞赛】FashionAI全球挑战赛—服饰属性标签识别【决赛第21名解决方案】
折腾了两个月的比赛终于结束了,名次出乎了最初的预料但是也有些许不甘,毕竟前20都有奖励,尴尬的21名比赛其实就是一个分类问题,给定衣服的图片然后分类到对应的标签上面去。数据集大致如下,看了两个月女装突然觉得自己可以去当个设计师,好多衣服都好丑好丑。要进行分类的服装一共分成八个大类,每个大类下又细分成若干个子类,如下。如collar_design是一个大类,其下有5个子类:task_list = {...
2018-06-05 11:32:28 7896 28
转载 KMP算法最浅显理解——一看就明白
转载自:https://blog.csdn.net/starstar1992/article/details/54913261说明KMP算法看懂了觉得特别简单,思路很简单,看不懂之前,查各种资料,看的稀里糊涂,即使网上最简单的解释,依然看的稀里糊涂。我花了半天时间,争取用最短的篇幅大致搞明白这玩意到底是啥。这里不扯概念,只讲算法过程和代码理解:KMP算法求解什么类型问题字符串匹...
2018-08-22 17:00:01 275 1
转载 PyTorch vs TensorFlow,哪个更适合你
文章原标题《PyTorch vs TensorFlow — spotting the difference》,作者:Kirill Dubovikov,译者:夏天,审校:主题曲哥哥。本文将探讨PyTorch和TensorFlow这两种流行深度学习框架之间的关键相似点和不同点。为什么选择这两个框架,而不是其他的呢?目前有很多的深度学习框架,而且很多都可用于实际的生产,我之所以选择这两个只是因为我对它们...
2018-05-28 11:32:54 25964
转载 YOLOv2 论文笔记
转载自:https://blog.csdn.net/jesse_mx/article/details/53925356论文地址:YOLO9000: Better, Faster, Stronger 项目主页:YOLO: Real-Time Object Detection(最近博客下很多人请求Caffe 代码,受人所托,已经不再提供,且关闭本文评论,望请见谅)概述时隔一年,YOLO(You Onl...
2018-05-09 20:34:07 440
转载 图像特征提取三大法宝:HOG特征、LBP特征、Haar-like特征
转自:https://blog.csdn.net/q123456789098/article/details/52748918(一)HOG特征1、HOG特征:方向梯度直方图(Histogram of Oriented Gradient, HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子。它通过计算和统计图像局部区域的梯度方向直方图来构成特征。Hog特征结合SVM分类器已经被广...
2018-04-27 01:21:57 2707
原创 理解DL的局部最小
DL是在一个非常高维的世界里做梯度下降。局部最小值很难形成,因为局部最小值要求函数在所有维度上都是局部最小。更实际得情况是,函数会落到一个鞍点上,如下图:多层神经网络,大部分局部极小值都在底部 ,已经非常接近全局最小值,如下图 DL训练的困难主要是鞍点问题。我们很可能也从来没有真的遇到过局部极值。Bengio组这篇文章Eigenvalues of the Hessian in Dee...
2018-04-26 22:21:46 929 1
转载 深度学习优化方法总结比较(SGD,Adagrad,Adadelta,Adam,Adamax,Nadam)
作者:ycszen 转载自:https://zhuanlan.zhihu.com/p/22252270前言 (标题不能再中二了)本文仅对一些常见的优化方法进行直观介绍和简单的比较,各种优化方法的详细内容及公式只好去认真啃论文了,在此我就不赘述了。SGD 此处的SGD指mini-batch gradient descent,关于batch gradient descent, stochastic ...
2018-04-03 11:29:43 4235
原创 避免过拟合的手段:L1&L2 regularization/Data Augmentation/Dropout/Early Stoping
面试机器学习或者深度学习的岗位有很大几率会问到这个问题,现在来总结一下如何避免过拟合问题:1、L1&L2 regularization1.1 L1 regularization 正则化项: 原始函数加上一个正则化项: 计算导数: 更新权重w: 对L1正则化的直观理解是当w为正时,更新后的w变小;当w为负时,更新后的w变大,使得w能够接近0,相当于对w惩罚,降低...
2018-03-19 20:15:08 730
转载 支持向量机通俗导论(理解SVM的三层境界)
原文链接:http://blog.csdn.net/v_july_v/article/details/7624837作者:July 。致谢:pluskid、白石、JerryLead。说明:本文最初写于2012年6月,而后不断反反复复修改&优化,修改次数达上百次,最后修改于2016年11月。声明:本文于2012年便早已附上所有参考链接,并注明是篇“学习笔记”,且写明具体参考了pluskid等...
2018-03-17 16:13:33 226
转载 LR与SVM的相同点与不同点
原文:http://blog.sina.com.cn/s/blog_818f5fde0102vvpy.html 在大大小小的面试过程中,多次被问及这个问题:“请说一下逻辑回归(LR)和支持向量机(SVM)之间的相同点和不同点”。第一次被问到这个问题的时候,含含糊糊地说了一些,大多不在点子上,后来被问得多了,慢慢也就理解得更清楚了,所以现在整理一下,希望对以后面试机器学习方向的同学有所...
2018-03-17 14:52:31 425
原创 理解卷积神经网
通俗地说,卷积神经网络的核心在于卷积核(kernel),又叫滤波器(filter)。卷积神经网络学习的整个过程,实际上是学得一个最好的滤波器,使得经过滤波后的图像更容易进行分类。1、卷积神经网络的原理 先来看看卷积的过程,以下是一个3*3的卷积核在5*5的图像上得到3*3卷积输出的过程。卷积核(黄色),在图像(绿色)上遍历,每到一个位置就进行逐元素的相乘并相加。例如在第一个位置,1*...
2018-03-17 00:58:00 629 1
原创 YOLOv2 训练自己的数据集#实现简单的缺陷检测(Ubuntu和Windows10可用)
运行环境,Ubuntu16.04 + CUDA 8 + cuDNN6 + Opencv3.1 Windows10 +MSVS2015+CUDA 9.1 + cuDNN7 + Opencv3.1Ubunutu环境下按照以下网址安装并配置好Darknet : https://pjreddie.com/darknet/install/ Windows10环...
2018-03-14 14:32:12 6481 41
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人