/*
判断大字符串是否包含某个子字符串
一般匹配字符串时,我们从目标字符串str(假设长度为n)的第一个下标选取和ptr长度(长度为m)
一样的子字符串进行比较,如果一样,就返回开始处的下标值,
不一样,选取str下一个下标,同样选取长度为n的字符串进行比较,直到str的末尾(实际比较时,下标移动到n-m)。
这样的时间复杂度是O(n*m)。
普通实现:
int strStr(const char *source, const char *target) {
// write your code here
if (source == NULL || target == NULL) return -1;
int lenS = strlen(source);
int lenT = strlen(target);
for (int i = 0; i < lenS - lenT + 1; ++i) {
int j;
for (j = 0; j < lenT; ++j) {
if (source[i + j] != target[j]) break;
}
if (j == lenT) return i;
}
return -1;
}
KMP是怎么做的呢?
KMP算法:可以实现复杂度为O(m+n)
为何简化了时间复杂度:
充分利用了目标字符串ptr的性质(比如里面部分字符串的重复性,
即使不存在重复字段,在比较时,实现最大的移动量)。
考察目标字符串ptr:
ababaca
这里我们要计算一个长度为m的转移函数next。
next数组的含义就是一个固定字符串的最长前缀和最长后缀相同的长度。
比如:abcjkdabc,那么这个数组的最长前缀和最长后缀相同必然是abc。
cbcbc,最长前缀和最长后缀相同是cbc。
abcbc,最长前缀和最长后缀相同是不存在的。
**注意最长前缀:是说以第一个字符开始,但是不包含最后一个字符。
比如aaaa相同的最长前缀和最长后缀是aaa。**
对于目标字符串ptr,ababaca,长度是7,所以next[0],next[1],next[2],
next[3],next[4],next[5],next[6]分别计算的是
a,ab,aba,abab,ababa,ababac,ababaca的相同的最长前缀和最长后缀的长度。
由于a,ab,aba,abab,ababa,ababac,ababaca的相同的最长前缀和最长后缀是
“”,“”,“a”,“ab”,“aba”,“”,“a”,所以next数组的值是[-1,-1,0,1,2,-1,0],
这里-1表示不存在,0表示存在长度为1,2表示存在长度为3。这是为了和代码相对应。
next数组的值,就是下次往前移动字符串ptr的移动距离。比如next中某个字符对应的值是4,
则在该字符后的下一个字符不匹配时,可以直接移动往前移动ptr 5个长度,再次进行比较判别。
http://blog.csdn.net/starstar1992/article/details/54913261参考网址
*/
#include<stdio.h>
#include<malloc.h>
void cal_next(char *str, int *next, int len)
{
next[0] = -1;//next[0]初始化为-1,-1表示不存在相同的最大前缀和最大后缀
int k = -1;//k初始化为-1
for (int q = 1; q <= len-1; q++)
{ //如果下一个不同,那么k就变成next[k],注意next[k]是小于k的,无论k取任何值。
while (k > -1 && str[k + 1] != str[q]){
k = next[k];//往前回溯
}
if (str[k + 1] == str[q])//如果相同,k++
{
k = k + 1;
}
next[q] = k;//这个是把算的k的值(就是相同的最大前缀和最大后缀长)赋给next[q]
}
}
int KMP(char *str, int slen, char *ptr, int plen)
{
int *next;
next = (int*)malloc(sizeof(int)*plen);
cal_next(ptr, next, plen);//计算next数组
int k = -1;
for (int i = 0; i < slen; i++)
{
while (k >-1&& ptr[k + 1] != str[i])//ptr和str不匹配,且k>-1(表示ptr和str有部分匹配)
k = next[k];//往前回溯
if (ptr[k + 1] == str[i])
k = k + 1;
if (k == plen-1)//说明k移动到ptr的最末端
{
printf("在位置%d\n",i-plen+1);
//cout << "在位置" << i-plen+1<< endl;
//k = -1;//重新初始化,寻找下一个
//i = i - plen + 1;//i定位到该位置,外层for循环i++可以继续找下一个
return i-plen+1;//返回相应的位置
}
}
return -1;
}
int main(){
char *str = "bacbababadababacambabacaddababacasdsd";
char *ptr = "ababaca";
int a = KMP(str, 36, ptr, 7);
return 0;
}
字符串查找
最新推荐文章于 2019-07-26 18:11:31 发布