[bzoj2820] yy的gcd

题意:给定整数N,求1<=x <= N, 1 <= y<=M且Gcd(x,y)为素数的数对(x,y)有多少对.
1 <= N, M <= 10000000, |query| <= 10000。


lhc的优化暴力暂不予讨论。推导如下:

首先对于 1 <= x <= N, 1 <= y <= M && gcd(x, y) == 1 的情况有:

令f(k) 表示上述范围内满足 gcd(i, j) = tk 的方案数(t为任意正整数),

令min为min(N, M), n表示不超过min的最大元素的下标,

易有


f(k) = (N div k) * (M div k), 

ans(k)= f(1) - f(2) - f(3) -... + f(2*3) + f(2*5) + etc

=f(1) - Σp <= min f(p) + Σp*q <= min f(p*q) - etc


由容斥原理得:


ans(k)=μ(1)*f[1] - Σμ(p)*f(p) + Σμ(p*q)*f(p, q) - etc

=Σ1 <= k <= min μ(k) * f(k)


其中p, q 为质数,k 为任意正整数,μ 为Mobius函数。

然后对于满足最终要求的答案,先枚举质数得:


ans = Σk = p1 to pn Σi=1 to N Σj=1 to M int(gcd(i, j) == k)

= Σk=p1 to pn Σi=1 to N div k Σj=1 to M div k int(gcd(i, j) == 1)

= Σk=p1 to pn Σ1 <= l <= min div k μ(l) * f(l)

= Σk=p1 to pn Σ1 <= l <= min div k μ(l) * (N div l div k) * (M div l div k)


其中 p1 to pn 为质数,int(x) 表示 x 为真则为1,否则为0。

由整除的结合律得:


ans = Σk = p1 to pn Σ1 <= l <= min div k μ(l) * (N div (l * k)) * (M div (l * k))


令x=l*k, 枚举 l 得:


ans = Σl is prime && l|x * (N div x) * (M div x)

= (N div x) * (M div x) * Σl is prime && l|x μ(l)


不难发现,对于任意正整数 K,枚举L, (K div L) 的取值方案数是O( √K ) 的。

因此只需要维护Σl is prime && l|x μ(l),即讨论范围内x任意的质因子的Mobius函数的和即可。

令其为 sum(x)。 考虑如何维护 sum(x):

令 G(x) 为 x 的所有质因子分解质因子后的指数和,g(x) 为 x 的质因子数,不难发现:


sum(x) = μ(x) * (-g(x)), G(x) = g(x)

(-1)^(g(x)), G(x) = g(x) + 1

0, G(x) > g(x) + 1


因此可以用线性筛法或枚举素数的方法求出。

对于每一组询问,我们可以预处理sum的前缀和,从而O( √N )回答每一次询问。

由于枚举素数是不超过O(n)级别的,加之预处理前缀和,故预处理的时间复杂度是O(N)的。

至此原问题在O(N + |query|* √N )的时间复杂度下得到解决。

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值