压缩感知和稀疏信号处理

本文探讨了压缩感知的理论基础,包括Shannon-Nyquist采样定理,以及稀疏信号的表示和压缩。介绍了小波变换在稀疏信号处理中的作用,并讨论了如何寻找最稀疏的解决方案。文章还深入浅出地阐述了压缩采样的概念,提出了直接在信息密度较高的空间采样的可能性,最后提到了用于信号恢复的最优化问题和相关工具。
摘要由CSDN通过智能技术生成

一、The Shannon-Nyquist Sampling Theorem

问题:原始数据是连续函数,是否能用有限个采样百分之百重现原始数据?

香农回答了这个问题:如果原始数据中最大频率为f,如果采样频率为2f,即每隔1/(2f)秒取一次样,则可完全恢复原始数据。


陆吾生教授2010年的视频中给出了非常直观的解释:


图a是采样和恢复过程,图b表示原始函数的傅里叶变换得到的频域分布,图c表示取样后的频域分布,可以看到是原始频域分布复制粘贴,且按采样频率位移,因为频率分布不能重叠,否则信息就会丢失,这个用公式表示就是下图的关系,所以可以很容易得到采样频率和原始频率的关系,图d是低通滤波器,图e是低通部分,即原始数据的频率分布。

最终的恢复公式就是,可以看成是采样后的信号与sinc函数卷积的结果:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值