斯坦纳树

斯坦纳树


为什么我会写这个东西的博客呢?

某天我无意在洛谷里面找到了一道状压的题目,JLOI省选的然后当时兴冲冲开始做。想了3天3夜还是没有想出来,最后决定去搜题解……然后看到题解的时候——震惊!斯坦纳树是什么东西???于是去学习了斯坦纳树……


其实斯坦纳树很好理解,它像线段树一样用于解决一类问题。

想必一定听说过最小生成树,斯坦纳树和最小生成树很类似:在一个拥有N个点的图中,有M条边,每条边有各自的边权;指定某一些点,目的是建立最小的边使得这些边的边权和最小并且能够让指定点中的所有点连通。

注意,和最小生成树不同,斯坦纳树并不是要是图中所有点连通。

怎么办呢,如果单独的去spfa的话,我们只能够求出某一个点到另一个点的距离,但是我们并不能保证所有的点都被来连通了,怎么保证指定点的点集都连通呢?

我们发现最后的最优解一定是树,它一定是由若干个子树拼凑而成的,所以可以定义 dp[ S ][ i ] 表示以第 i 个点为根节点,并且指定点集 S0 (二进制状态)中有 S 状态的点连通。

注意:i 节点可以以任何点为根,S0 为指定节点的集合所有都被连通的状态(1111……11),而 S 是枚举的连通集合。

我们如何保证dp[ S ][ i ]中边的权值最小呢?

还是同样的原理:“最后的最优解一定是树,它一定是由若干个子树拼凑而成的”,那么当前状态 指定的点中连通子集 S 并且以 i 为根的最优边权和一定是由以 i 为根的两颗子树的合并,并且这两颗子树的所覆盖的指定点一定不会重合!(想一想,为什么)

因为这样的解一定不是最优的(你花了额外的边去连接重复的点)!


因此枚举子集 s,并且求出子集对于的 S 的补集 S^s ,min (dp [ s ][ i ] + dp [ S ^ s ] [ i ],dp [ S ] [ i ])更新 dp [ S ][ i ];

得到 <转移方程1>:

dp [ S ][ i ] = min(dp [ s ][ i ] + dp [ S ^ s ] [ i ],dp [ S ] [ i ]);


光这样不够,由于获得了当前以 i 为根的最优解,那么有可能会影响到与 i 相邻的所有点,甚至于所有点N对于只覆盖状态为S的点子集的最优解,也就是说:dp [ S ] [ i ] 比 dp [ S ] [ j ] + dis [ i ][ j ] 更优(j 属于 N,dis表示 i 和 j 的间接距离)的时候,我们可以用 dp [ S ] [ i ] 更新 dp [ S ] [ j ];

得到 <转移方程2>:

dp [ S ] [ v ] = min(dp [ S ] [ frt ] + dis [ i ],dp [ S ] [ v ]); (frt 为 spfa 的队首,v 与 frt 有边连接)

注意,对于单独的覆盖集合 S 的 i 只能更新覆盖集合为 S 的 j;不能更新其他集合的点;


代码:


#include <bits/stdc++.h>

std :: queue < int >  q ;

const  int  N = 10000 + 5 , N_ = 10 + 5 , SS = ( 1 << N_ ) , inf = 1e8 + 7 ;

int  head [ N ] , to [ N ] , dis [ N ] , nxt [ N ] , cn ;
int  dp [ N ] [ SS ] , n , m , p , S0 , cnt , x , y , w ;
bool  vis [ N ] ;

int  minx ( int  a , int  b ) {
	return  a < b ? a : b ;
}

void  create ( int  u , int  v , int  d ) {
	cn ++ ;
	dis [ cn ] = d ;
	to [ cn ] = v ;
	nxt [ cn ] = head [ u ] ;
	head [ u ] = cn ;  
}

void  spfa ( int  S ) {
	memset ( vis , false , sizeof ( vis ) ) ;
	while ( ! q . empty (  ) ) {
		int  frt = q . front (  ) ; q . pop (  ) ;
		vis [ frt ] = false ; 
		for ( int  i = head [ frt ] ; i ; i = nxt [ i ] ) {
			int  v = to [ i ] ;
			if ( dp [ S ] [ v ] > dp [ S ] [ frt ] + dis [ i ] ){
				dp [ S ] [ v ] = dp [ S ] [ frt ] + dis [ i ] ;
				if ( ! vis [ v ] ) {
					q . push ( v ) ;
					vis [ v ] = true ;
				}
			}
		}
	}
}

int  main (  ) {
	//斯坦纳树 Code ; 
	freopen ( "in.in" , "r" , stdin ) ;
	
	scanf  ( "%d%d%d" , & n , & m , & cnt ) ;
	//有 cnt 个点需要连通,并且这 cnt 个点的编号构成一个 1 ~ cnt 的序列 ; 
	S0 = ( 1 << cnt ) - 1 ;
	
	for ( int  i = 1 ; i <= m ; i ++ ) {
		scanf ( "%d%d%d" , & x , & y , & w ) ;
		create ( x , y , w ) ;
		create ( y , x , w ) ; 
	}
	
	for ( int  i = 1 ; i <= n ; i ++ ) 
	    for ( int  s = 0 ; s <= S0 ; s ++ ) 
	        dp [ s ] [ i ] = inf ; 
	
	for ( int  i = 1 ; i <= cnt ; i ++ )
		dp [ 1 << i - 1 ] [ i ] = 0 ;
	
	for ( int  S = 0 ; S <= S0 ; S ++ ) {
		
		for ( int  s = ( S - 1 ) & S ; s ; s = ( s - 1 ) & S ) //s 是 S 的子集 ;  
			for ( int  j = 1 ; j <= n ; j ++ )
			    if ( dp [ S ] [ j ] > dp [ s ] [ j ] + dp [ S ^ s ] [ j ] )
			        dp [ S ] [ j ] = dp [ s ] [ j ] + dp [ S ^ s ] [ j ] ;
		
		for ( int  j = 1 ; j <= n ; j ++ )
		    if ( dp [ S ] [ j ] < inf  &&  ! vis [ j ] )
		    	q . push ( j ) , vis [ j ] = true ;
		
		spfa ( S ) ;
		
	}
	
	int  ans = inf ; 
	
	for ( int  i = 1 ; i <= n ; i ++ )
		ans = minx ( ans , dp [ S0 ] [ i ] ) ;
	
	printf ( "%d" , ans ) ;
	
	return  0 ;
}


这份代码不适用于任何斯坦纳树的模板题目!!!

仅供理解!!!

### 回答1: Python实现最小斯坦纳树的代码可以使用Prim算法来解决。具体实现如下: ```python import sys # 为了方便表示图的邻接矩阵,使用无穷大代表不可达 inf = sys.maxsize def prim(graph): num_vertices = len(graph) key = [inf] * num_vertices # 记录顶点到最小生成树的最小权值边 parent = [None] * num_vertices # 记录最小生成树中顶点的父节点 visited = [False] * num_vertices # 记录顶点是否已访问 # 将第一个顶点设为起始顶点 key[0] = 0 for _ in range(num_vertices): # 找到未访问的顶点中键值最小的顶点 min_key = inf min_vertex = None for v in range(num_vertices): if not visited[v] and key[v] < min_key: min_key = key[v] min_vertex = v # 将找到的顶点标记为已访问 visited[min_vertex] = True # 更新顶点的最小权值边和父节点 for v in range(num_vertices): if not visited[v] and graph[min_vertex][v] < key[v]: key[v] = graph[min_vertex][v] parent[v] = min_vertex return parent def min_steiner_tree(graph, terminals): num_terminals = len(terminals) # 构建终端间的最短路径图 shortest_paths = [[inf] * num_terminals for _ in range(num_terminals)] for i in range(num_terminals): for j in range(num_terminals): shortest_paths[i][j] = dijkstra(graph, terminals[i], terminals[j]) # 在最短路径图上生成最小斯坦纳树 steiner_tree = [[inf] * num_terminals for _ in range(num_terminals)] for i in range(num_terminals): for j in range(num_terminals): if i == j: steiner_tree[i][j] = 0 else: for k in range(num_terminals): steiner_tree[i][j] = min(steiner_tree[i][j], shortest_paths[i][k] + shortest_paths[k][j]) # 使用Prim算法生成最小生成树 parent = prim(steiner_tree) return parent # 测试代码 graph = [[0, 7, 9, inf, inf, 14], [7, 0, 10, 15, inf, inf], [9, 10, 0, 11, inf, 2], [inf, 15, 11, 0, 6, inf], [inf, inf, inf, 6, 0, 9], [14, inf, 2, inf, 9, 0]] terminals = [0, 2, 4] parent = min_steiner_tree(graph, terminals) print(parent) ``` 此代码是使用Prim算法在最短路径图上生成最小斯坦纳树。输入的图是一个邻接矩阵,其中inf表示顶点之间不可达。terminals是终端节点的列表。输出是一个列表,表示每个顶点在生成的最小斯坦纳树中的父节点。 ### 回答2: Python实现最小斯坦纳树的代码可以使用图的最小生成树算法和动态规划的思想。 首先,我们可以使用Prim算法或Kruskal算法找到图的最小生成树,即连接所有顶点的最小权重的子图。 接下来,对于每一条边,我们通过遍历所有顶点集合的子集来找到最小斯坦纳树。子集的大小从1开始递增,直到包含所有顶点为止。 对于每个子集,我们通过动态规划的方法来找到连接子集中所有顶点的最小权重的边。 具体的实现步骤如下: 1. 使用Prim算法或Kruskal算法找到图的最小生成树,并保存最小生成树的边集合。 2. 对于每条边e in 最小生成树的边集合: 2.1 对于每个顶点集合V'(从1个元素开始递增到总顶点数): 2.1.1 如果V'包含边e的两个顶点,则忽略该顶点集合。 2.1.2 否则,遍历V'的所有子集V'': 2.1.2.1 如果V''中不包含边e的两个顶点,则忽略该子集。 2.1.2.2 否则,计算通过V''中的顶点连接边e的权重和,并更新最小权重值和对应的边。 3. 最后得到的最小权重值和对应的边即为最小斯坦纳树的结果。 以下是一个简单的Python代码示例: ```python import math def minimum_steiner_tree(graph): n = len(graph) inf = float('inf') dp = [[inf] * n for _ in range(1 << n)] for v in range(n): dp[1 << v][v] = 0 for S in range(1 << n): for v in range(n): for u in range(n): dp[S | (1 << u)][u] = min(dp[S | (1 << u)][u], dp[S][v] + graph[v][u]) return min(dp[-1]) # 测试代码 graph = [[0, 2, 3, math.inf], [2, 0, 1, 3], [3, 1, 0, 2], [math.inf, 3, 2, 0]] result = minimum_steiner_tree(graph) print("最小斯坦纳树的权重为:", result) ``` 权重矩阵graph表示的是无向图的邻接矩阵,math.inf表示无穷大,表示两个顶点之间没有边。代码中的结果为最小斯坦纳树的权重。 ### 回答3: Python最小斯坦纳树的代码可以通过使用Dijkstra算法和回溯法来实现。以下是一个可能的实现: ```python import sys def dijkstra(graph, src): n = len(graph) dist = [sys.maxsize] * n dist[src] = 0 visited = [False] * n for _ in range(n): u = min_distance(dist, visited) visited[u] = True for v in range(n): if graph[u][v] > 0 and not visited[v] and dist[v] > dist[u] + graph[u][v]: dist[v] = dist[u] + graph[u][v] return dist def min_distance(dist, visited): min_dist = sys.maxsize min_index = -1 for v in range(len(dist)): if not visited[v] and dist[v] < min_dist: min_dist = dist[v] min_index = v return min_index def tsp_solver(graph, start): n = len(graph) tsp_path = None tsp_cost = sys.maxsize def tsp_recursion(curr_node, visited, current_path, current_cost): nonlocal tsp_path, tsp_cost if len(visited) == n: if graph[curr_node][start] > 0: current_cost += graph[curr_node][start] current_path.append(start) if current_cost < tsp_cost: tsp_cost = current_cost tsp_path = current_path.copy() current_path.pop() current_cost -= graph[curr_node][start] return for next_node in range(n): if next_node not in visited: new_path = current_path.copy() new_path.append(next_node) tsp_recursion(next_node, visited + [next_node], new_path, current_cost + graph[curr_node][next_node]) tsp_recursion(start, [start], [start], 0) return tsp_path, tsp_cost def min_steiner_tree(graph, terminals): n = len(graph) t = len(terminals) dp = [[sys.maxsize] * t for _ in range(1 << t)] # 动态规划表格 path = [[None] * t for _ in range(1 << t)] # 记录路径 for i in range(t): dist = dijkstra(graph, terminals[i]) for j in range(t): dp[1 << i][j] = dist[terminals[j]] for i in range(1 << t): for j in range(t): if dp[i][j] == sys.maxsize: continue for k in range(t): if (i >> k) & 1 == 0 and dp[i][j] + dp[1 << k | i][k] < dp[1 << k | i][k]: dp[1 << k | i][k] = dp[i][j] + dp[1 << k | i][k] path[1 << k | i][k] = j min_cost = sys.maxsize min_path = None for i in range(t): if dp[(1 << t) - 1][i] < min_cost: min_cost = dp[(1 << t) - 1][i] min_path = [i] while len(min_path) < t: last_node = min_path[-1] min_path.append(path[(1 << t) - 1][last_node]) min_path = [terminals[i] for i in min_path] tsp_path, tsp_cost = tsp_solver(graph, terminals[0]) min_cost += tsp_cost min_path += tsp_path[1:] return min_path, min_cost # 测试例子 graph = [ [0, 2, 3, 0, 0], [2, 0, 0, 4, 0], [3, 0, 0, 1, 3], [0, 4, 1, 0, 2], [0, 0, 3, 2, 0] ] terminals = [1, 2, 3] path, cost = min_steiner_tree(graph, terminals) print("最小斯坦纳树路径:", path) print("最小斯坦纳树总成本:", cost) ``` 这段代码通过调用`min_steiner_tree`函数来计算给定图和终端点集合的最小斯坦纳树的路径和成本。`graph`代表图的邻接矩阵,`terminals`代表终端点的列表。最后将得到的最小斯坦纳树路径和成本打印出来。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值