蛇形填数 1 在 n*n 方阵里填入 1,2,3,…,n*n,要求填成蛇形。
蛇形填数 2 描述 1 2 3 4 5 12 13 14 6 11 15 7 10 8 9 跟蛇形填数一样,只是填数要求按照三角形填。注意每组数据之间用空行隔开 输入 第一行有一个 N,表示 N 组测试数据 接下来每组数据包括一个数字 X,表示三角形的边长,0< X <1000 输出 输出之后填好之后的图
蛇形填数 3
输入 第一行有一个 N,表示方阵的大小 i,j 分别表示第 i 行,第 j 列 输出 (1)输入 N,则输出之后填好之后的图 (2)输入 N,i,j,则输出图形中相应位置的数值
蛇形填数1
#include<stdio.h>
int main(){
int n,sum=1;
int i=0,j=3;
printf("请输入是几阶方阵:");
scanf("%d",&n);
int a[n][n];
for(int k=0;k<n;k++){ //先赋值为零,之后便与判断此位置是否已经填数
for(int l=0;l<n;l++){
a[k][l]=0;
}
}
a[i][j]=1;//先将第一个确定的数填入
while(sum<n*n){ //总共需要填入n*n个数,作为循环的条件
while(i+1<n && !a[1+i][j]){//四个循环进行输入每一行和每一列,循环的条件要防止溢出数组
a[++i][j]=++sum;
} //四个循环的条件要保证,没有溢出,并且此空为零(没被填过数)
while(j-1>-1 && !a[i] [j-1]){
a[i][--j]=++sum;
}
while(i-1>-1 && !a[i-1][j]){
a[--i][j]=++sum;
}
while(j+1<4 && !a[i][j+1]){
a[i][++j]=++sum;
}
}
for(int k=0;k<n;k++){
for(int l=0;l<n;l++){
printf(" %-2.d",a[k][l]);
}
printf("\n");
// printf("\n");
}
return 0;
}
蛇形填数2
#include <stdio.h>
#include<iostream>
using namespace std;
int main(){
int n,b,k=0,l=0;
printf("请输入边的大小:");
cin>>n;
int a[n][n];
for(int i=0;i<n;i++){//将数组赋予初值,表示该位置没有填数
for(int j=0;j<n;j++){
a[i][j]=0;
}
}
a[0][0]=1;
int sum=1;
while(sum<((n*n-n)/2+n)){
while(l+1<n && !a[k][l+1]){
a[k][++l]=++sum;
}
while(k+1<n && l-1>-1 && !a[k+1][l-1]){
a[++k][--l]=++sum;
}
while(k-1>-1 && !a[k-1][l]){
a[--k][l]=++sum;
}
}
for(int i=0;i<n;i++){
for(int j=0;j<n;j++){
if(a[i][j])
printf("%-4.d",a[i][j]);
}
printf("\n");
}
return 0;
}
蛇形填数3
#include<iostream>
using namespace std;
int main(){
int n ,t,i=0,j=0,sum=1;
printf("请输入方阵的边长:");
cin>>n;
int a[n][n];
a[0][0]=1;
i++;
t=i;//用t来保存原来行的下标
while(sum<((n*n-n)/2)+n){//需要填的数的个数为总循环的条件
if(i<n){ //第一个循环用来填上半个三角行
while( i>=0 && j<n){
a[i][j]=++sum;
j++; //没填一个数后,行减一,列加一
i--;
}
}
t++;//每次循环后让行的下标加一,列的下标置为0
i=t;//让新的下标赋值给i
j=0;
}
i=n-1;
j=0;
j++;//第二个循环用来填下半个三角行
t=j;//用t来保存原来下标的值
while(sum<n*n){
if(j<n){
while(i>=0 && j<n ){// 与上面相反,每填一个数列的下标加一,行的下标减一
a[i][j]=++sum;
j++;
i--;
}
}
t++;//每循环一次,列的下标加一,行置为最后一行
j=t;
i=n-1;
}
for(int k=0;k<n;k++){
for(int l=0;l<n;l++){
printf("%-4.d",a[k][l]);
}
printf("\n");
}
return 0;
}