- 博客(3)
- 资源 (1)
- 收藏
- 关注
原创 从高维变换的角度理解神经网络
我们现实世界中很多问题其实都是可以模型化的,而为了更好的描述并解决问题,数学家们人为创造了很多符号方便我们理解客观世界的规律。根据以往数学建模的经历加上对神经网络的理解,我发现可以从“维度”的角度去理解神经网络。首先一般的几何思维都知道0维是一个点,一维是一天线,二维是一个平面,三维是一个立方体,那么四维是一开始伽利略发现的时间维,最后被牛顿总结,再被爱因斯坦进一步解释的广义相对论。那么我们的现实空间中存在高维吗?答案是肯定的。比如,我们现在要做一个简单的决策,现在有四部电影可供选择:《黑客帝国》《天空
2020-06-13 02:06:12 1312 1
转载 强化学习综述(机器学习角度)
Reinforcement Learning:A Survey作者:Leslie Pack Kaelbling, Michael L. Littman, Andrew W. Moore(整理转自https://zhuanlan.zhihu.com/p/72296706)目录摘要1 引言1.1 强化学习模型1.2 最优行为模型1.3 学习性能的评估1.4 强化学习和自适应控制2 探索与利用:单一状态情况2.1 被形式化证明了的方法2.1.1 动态规划2.1.2 Gittins分配指数2.1.3 自动机学
2020-06-10 00:52:11 481
原创 记录|Mac环境下解决Permission denied的问题
保研以来日子挺闲的,还是要好好把导师给的任务做好,TensorFlow学起来!一个软件小白决定从python基础开始学习啦。决定把学习过程遇到的问题和解决方法记录一下。解决执行.py受限的问题在PyCharm里输入,并保存到 hello.pyprint(‘hello,world!’)想要在终端通过命令执行.py文件./pythonwork/hello.py显示执行受限-b...
2019-04-30 18:07:46 7888
区块链司法存证应用白皮书(1.0版).pdf
2021-12-16
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人