异常检测是数据分析领域的重要任务之一,它旨在识别与大多数数据样本不一致的异常数据。随着边缘计算的兴起,将异常检测算法部署到边缘设备上已成为一种趋势。本文将介绍一系列基于边缘计算的异常检测算法,并提供相应的源代码实现。
- 基于统计方法的异常检测算法
统计方法是最常用的异常检测方法之一。其中,一种常见的统计方法是基于均值和标准差的Z-score方法。该方法假设数据服从正态分布,将数据点的Z-score值与给定的阈值进行比较来识别异常值。
import numpy as np
def z_score(data):
mean = np.mean(data)