基于边缘计算的异常检测算法系列

文章探讨了异常检测的重要性,特别是在边缘计算环境中的应用。介绍了三种方法:基于统计的Z-score方法,基于K-means聚类的离群点检测,以及使用自动编码器的深度学习方法。通过在边缘设备上部署这些算法,可以实现快速异常检测并采取应对措施。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

异常检测是数据分析领域的重要任务之一,它旨在识别与大多数数据样本不一致的异常数据。随着边缘计算的兴起,将异常检测算法部署到边缘设备上已成为一种趋势。本文将介绍一系列基于边缘计算的异常检测算法,并提供相应的源代码实现。

  1. 基于统计方法的异常检测算法

统计方法是最常用的异常检测方法之一。其中,一种常见的统计方法是基于均值和标准差的Z-score方法。该方法假设数据服从正态分布,将数据点的Z-score值与给定的阈值进行比较来识别异常值。

import numpy as np

def z_score(data):
    mean = np.mean(data)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值