Day41 动态规划3
343. 整数拆分
思路
不知道如何拆分,才能使乘积最大化
有什么理论依据?
根据代码随想录
拆分使乘积最大化逻辑:应该尽可能拆成相同的数
根据题目,发现,拆分后的数可以继续拆分,因此可以用动规的思路
要点:
- dp数组含义 对i进行拆分,得到最大乘积为dp[i]
- 递推公式:
如果拆成两个数:j * (i - j)
如果拆成三个数以上:j * dp[i - j]
递推公式可以将所有的情况都考虑,在比较取最大值就行;因此不知道上述逻辑也能写
最终代码:
class Solution:
def integerBreak(self, n: int) -> int:
dp = [0] * (n + 1)
dp[0] = 0
dp[1] = 0
dp[2] = 1
for i in range(3, n + 1):
for j in range(1, i // 2 + 1):
dp[i] = max(j * (i - j), j * dp[i - j], dp[i])
return dp[n]
总结:
一开始不知道怎么拆最大,觉得会有一个特别的逻辑,但是实际写代码的时候,是一个暴力的方式将所有的情况都考虑,再比较取值的。
96.不同的二叉搜索树
思路
dp[i]的结果可以看作根节点为1到i的二叉搜索树种数之和
但是不同n,根节点为i得到的结果也不同
不知道怎么想递推公式
根据代码随想录
首先,根据样例观察规律
n = 3
1为根节点以及3为根节点,右子树的分布和n为2的布局是一样的
2为根节点,左右子树的分布根n为1一样
总共和 = 根节点为1的情况 + 根节点为2 + 根节点为3
根节点为1 = 左子树0个节点 * 右子树2个节点
根2 = 左子树1个节点 * 右子树1个节点
根3 = 左子树2个节点 * 右子树0个节点
n = 3可以根据0,1,2三种情况推导出来
j 为根节点,左边有j - 1个节点,右面有i - j个节点
最终代码:
class Solution:
def numTrees(self, n: int) -> int:
dp = [0] * (n + 1)
dp[0] = 1
for i in range(1, n + 1):
for j in range(1, i + 1):
dp[i] += dp[j - 1] * dp[i - j]
return dp[n]
总结
这题有点难,没做过想不到怎么做